平行四边形教案

时间:2023-05-24 11:29:11 教案 我要投稿
  • 相关推荐

平行四边形教案三篇

  作为一名教职工,时常要开展教案准备工作,教案有助于学生理解并掌握系统的知识。优秀的教案都具备一些什么特点呢?以下是小编整理的平行四边形教案3篇,仅供参考,希望能够帮助到大家。

平行四边形教案三篇

平行四边形教案 篇1

  【当堂检测】

  1.(20xx 年永州市).下列命题是假命题的是( )

  A.两点之间,线段最短; B.过不在同一直线上的三点有且只有一个圆.

  C.一组对应边相等的两个等边三角形全等; D.对角线相等的四边形是矩形.

  2.如图,一个四边形花坛 ,被两条线段 分成四个部分,分别种上红、黄、紫、白四种花卉,种植面积依次是 ,若 , ,则有( )

  A. B. C. D.都不对

  3.(20xx襄樊)如图,在平行四边形 中, 于E 且 是一元二次方程 的根,则平行四边形 的周长为( )

  A. B. C. D.

  4.(20xx年南宁市)如图(1),在边长为5的正方形 中,点 、 分别是 、 边上的点,且 , .

  (1)求 ∶ 的'值;

  (2)延长 交正方形外角平分线 ,如图2试判断 的大小关系,并说明理由;

  (3)在图(2)的 边上是否存在一点 ,使得四边形 是平行四边形?若存在,请给予证明;若不存在,请说明理由.

平行四边形教案 篇2

  教学目标:

  1、知识与能力目标:通过学生自主探索、动手实践推导出平行四边形面积计算公式,能正确求平行四边形的面积。

  2、过程与方法目标:让学生经历平行四边形面积公式的推导过程,通过操作、观察、比较,发展学生的空间观念,渗透转化的思想方法。

  3、情感态度与价值观目标:培养学生的分析、综合、抽象、概括和解决实际问题的能力;使学生感受数学与生活的联系,培养学生的数学应用意识,体验数学的实用价值。

  教学重点:

  探究并推导平行四边形面积的计算公式,并能正确运用。

  教学难点:

  平行四边形面积公式的推导方法――转化与等积变形。

  教学方法:

  利用知识迁移及剪、移、拼的实际操作来分解教学难点,引导学生理解平行四边形与长方形的等积转化,通过剪、移、拼找出平行四边形底和高与长方形长和宽的关系,把握面积始终不变的特点,归纳出平行四边形等积转化成长方形面积。

  教具、学具准备:

  多媒体课件、平行四边形纸片、长方纸卡,剪刀等。

  教学过程:

  一、情境激趣

  二、自主探究

  古时候,有一位老地主给他的两个儿子分地,大儿子分了一块长方形的地,小儿子分得了一块平行四边形的地。可是两个儿子都觉得自己分的地太少,对方的土地多,为此两个儿子争论不休。老地主十分苦恼,不知如何是好。这个难题同学们想想办法能解决吗?

  在很久以前,我们的祖先计算平行四边形的面积和计算长方形的面积一样,采取了数方格的方法。老师也为你们准备了一个格子图,你们来数一数它们的面积是多少?

  1、数方格,比较两个图形面积的大小。

  (1)提出要求:每个方格表示1平方厘米,不满一格的都按半格计算。

  (2)小组合作,学生用数方格的方法计算两个图形的面积并填写研究报告单。

  (3)反馈汇报数的结果,得出:用数方格的方法知道了两个图形的面积一样大。

  (4)提出问题:如果平行四边形很大,用数方格的方法麻烦吗?

  (学生:麻烦,有局限性。)

  (5)观察表格,你发现了什么?

  出示表格平行四边形底底边上的高面积

  长方形长宽面积

  (6)引导学生交流自己的发现。

  反馈:平行四边形的底和长方形的长相等,平行四边形的高和长方形的宽相等,平行四边形的面积和长方形的面积相等;平行四边形的面积等于底乘高。

  (7)提出猜想:猜想:平行四边形的面积=底高是否适合所有的平行四边形面积呢?

  2、动手操作,验证猜想。

  (1)提出要求:小组分工合作,利用三角尺、剪刀,动手剪一剪、拼一拼,把平行四边形想办法转变成一个长方形。完成后和小组的同学互相交流自己的方法。

  (2)学生展示,平行四边形变成长方形的方法。(沿着平行四边形的高将平行四边形剪成两个直角梯形,拼成一个长方形。)

  (3)观察并思考:

  ①拼成的长方形和原来的平行四边形比较,什么变了?什么没变?

  ②拼成的长方形的.长与宽分别与原来平行四边形的底和高有什么关系?

  (5)交流反馈,引导学生得出结论

  ①形状变了,面积没变。

  ②拼成的长方形,长与原来平行四边形的底相等,宽与原来平行四边形的高相等。

  (6)根据长方形的面积公式得出平行四边形面积公式并用字母表示。

  观察面积公式,要求平行四边形的面积必须知道哪两个条件?

  (平行四边形的底和高)

  (7)请大家想一想,我们是怎样推导出平行四边形的面积公式的?

  (转化图形的形状)

  (8)探究活动小结:我们把平行四边形转化成了同它面积相等的长方形,利用长方形面积计算公式得出了平行四边的面积等于底乘高,验证了前面的猜想。

  3、运用公式,解决问题。

  (1)出示例1

  例1、学校1栋楼前停车场,每个车位都是一个平行四边形,它的底是6米,高是4米,一个车位的面积有多少平方米?

  (2)学生独立完成并反馈答案。

  三、看书释疑P79~81

  四、巩固运用

  1、判断,平行四边形面积的概念。

  (1)、两个平行四边形的高相等,它们的面积就相等( )

  (2)、平行四边形的高不变,底越长,它的面积就越大( ) 。

  (3)、一个平行四边形的底是9厘米,高是3分米,它的面积是27平方厘米。

  2、计算,平行四边形的面积。

  3、拓展1,你有几种方法求下面图形的面积?

  4、拓展2 比较,等底等高的平行四边形的面积。

  五、课堂总结

  通过这节课的学习,你有哪些收获?(学生自由回答。)

平行四边形教案 篇3

  导学目标:

  1、经历并了解平行四边形的判别方法探索过程,使学生逐步掌握说理的基本方法。

  2、探索并了解平行四边形的判别方法:两条对角线互相平分的四边形是平行四边形;一组对边平行且相等的四边形是平行四边形。能根据判别方法进行有关的应用。

  3、在探索过程中发展学生的合理推理意识、主动探究的习惯。

  4、体验数学活动来源于生活又服务于生活,提高学生的学习兴趣。

  导学重点:平行四边形的判别方法。

  导学难点:根据判别方法进行有关的应用

  导学准备:多媒体课件

  导学过程:

  一、快速反应

  1.如图,四边形ABCD,AC、BD相交于点O,若OA=OC,OB=OD,则四边形ABCD是__________,根据是_____________________

  2.如图,四边形ABCD中,AB//CD,且AB=CD,则四边形ABCD是___________,理由是__________________________

  3.小明拼成的四边形如图所示,图中的四边形ABCD是平行四边形吗?

  结论:______________________________________

  符号表示:

  4. 如图:在四边形ABCD中,2,4.四边形ABCD是平行四边形吗?为什么?

  在图中,AC=BD=16, AB=CD=EF=15,

  CE=DF=9。

  图中有哪些互相平行的线段?

  二、议一议

  1.一组对边平行,另一组对边相等的四边形一定是平行四边形吗?

  三、平行四边形的判别方法:

  (1)两组对边分别平行的四边形是平行四边形。

  (2)两组对边分别相等的四边形是平行四边形。

  (3)一组对边平行且相等的四边形是平行四边形。

  (4)两条对角线互相平分的四边形是平行四边形。

  四、练一练:

  1.判断下列说法是否正确

  (1)一组对边平行且另一组对边相等的四边形是平行四边形 ( )

  (2)两组对角都相等的四边形是平行四边形 ( )

  (3)一组对边平行且一组对角相等的四边形是平行四边形 ( )

  (4)一组对边平行,一组邻角互补的四边形是平行四边形 ( )

  2.有两条边相等,并且另外的两条边也相等的'四边形一定是平行四边形吗?

  3.比一比:如图,四个全等三角形拼成一个大的三角形,找出图中所有的平行四边形,并说明理由。

  五、师生共同小结,主要围绕下列几个问题:

  (1)判定一个四边形是平行四边形的方法有哪几种?

  (2)我们是通过什么方法得出平行四边形的这几种判定方法的,这样的探索过程对你有什么启发?

  (3)平行四边形判定的应用

  六、课后巩固:课本P107习题4.4第1题和第2题

  七、课后反思: