小学数学六年级教案

时间:2024-08-23 14:17:38 教案 我要投稿

小学数学六年级教案

  作为一无名无私奉献的教育工作者,总不可避免地需要编写教案,借助教案可以让教学工作更科学化。那么你有了解过教案吗?下面是小编为大家收集的小学数学六年级教案,希望能够帮助到大家。

小学数学六年级教案

  小学数学六年级教案 篇1

  教学目标:

  1.结合具体目标,体会生活中存在着大量互相依存的变量。

  2.在具体情境中,尝试用自己的语言描述两个变量之间的关系。

  教学重点:

  结合具体目标,体会生活中存在着大量互相依存的变量。

  教学难点:

  在具体情境中,尝试用自己的语言描述两个变量之间的关系。

  教学用具:课件

  教学过程:

  一、 课前预习

  1、预习书18页内容,尝试回答书上的问题

  2、找一找其中的变量,想一想它们之间有没有关系?如果有,有怎样的关系?

  3、仔细看书,看看哪些关系能够用式子表示?

  二、课堂展示

  活动一:观察并回答。

  1、下表是小明的体重变化情况。

  观察表中所反映的内容,搞清楚表中所涉及的量是哪两个量?观察后请回答。

  2、上表中哪些量在发生变化?

  3、说一说小明10周岁前的体重是如何随年龄增长而变化的?

  小结:小明的体重随年龄的增长而变化。2—6岁和6---10岁是体重的增长高峰。说明这两个阶段是孩子成长的重要阶段。

  4、体重一直会随年龄的增长而变化吗?这说明了什么?

  说明:体重和年龄是一组相关联的量。体重的增长是随着人的生长规律而确定的。

  1、教育学生要合理饮食,适当控制自己的体重。

  活动二:骆驼被称为“沙漠之舟”,它的体温随时间的变化而发生较大的变化。

  观察书上统计图:

  1、图中所反映的两个变化的量是哪两个?

  2、横轴表示什么?纵轴表示什么?

  同桌两人观察并思考,得出结论后,记录在书上,然后再在全班汇报说明。

  3、一天中,骆驼的体温是多少?最低是多少?

  4、一天中,在什么时间范围内骆驼的体温在上升?在什么时间范围内骆驼的体温在下降?

  5、第二天8时骆驼的体温与前一天8时的体温有什么关系?

  6、 骆驼的体温有什么变化变化的规律吗?

  活动三:某地的一位学生发现蟋蟀叫的次数与气温之间有如下的近似关系。

  1、 蟋蟀1分叫的次数除以7再加3,所得的结果与当时的气温值差不多。

  2、 如果用 t 表示蟋蟀每分叫的'次数,你能用公式表示这个近似关系吗?请你写出这个关系式,全班展示,交流。

  3、你还发现生活中有哪两个量之间具有变化的关系?它们之间是怎样变化的?四人小组交流你收集到的信息,选派代表请举例说明

  4、 你还发现我们学过的数学知识中有哪些量之间具有变化的关系?

  三、反馈与检测

  1、连一连,把相互变化的量连起来。

  路程 正方形周长

  边长 购卖数量

  总价 行驶时间

  2、说一说,一个量怎样随另一个量变化。

  (1)一种故事书每本3元,买书的总价与书的本数。

  (2)一个长方形的面积是24平方厘米,长方形的长与宽。

  3、小明到商店买练习簿,每本单价2元,购买的总数x(本)与总金额y(元)的关系式,可以表示为:

  四、全课小结:今天我们研究的两个量都是相关联的。它们之间在变化的时候都具有一定的关系。下一节课我们将深入研究具有相关联的两个量,在变化时有相同的变化特征,这样的知识在数学上的应用。

  小学数学六年级教案 篇2

  教学目标:

  1、使学生在具体情境中理解比的意义,掌握比的读写方法,知道比的各部分名称,会求比值。

  2、使学生经历探索比与分数、除法关系的过程,初步理解比与分数、除法的关系,会把比改写成分数的形式。

  3、使学生在活动中培养分析、综合、抽象、概括能力,在解决实际问题的过程中,体会数学与生活的联系,体验数学学习的乐趣。

  教学重点:

  使学生经历从具体情境中抽象出比的过程,理解比的意义,了解比的各部分名称。

  教学难点:

  理解比的意义,掌握比与比值的区别。

  教学过程:

  一、情境导入

  1、出示长方形。出示条件:长3米,宽2米,你能求什么呢?

  预设可能提出的问题:

  (1)周长和面积

  (2)长比宽多几米?

  (3)宽比长短几米?

  (4)长是宽的几倍?

  (5)宽是长的几分之几?

  师:哪些问题是表示两个量之间的倍数关系的?今天我们一起来学习长与宽的另一种关系:比。

  二、共同探讨,学习新知(1)比是一种什么样的概念?学生自学课本P68页例1,看看谁能弄懂这一部分内容。

  (2)交流小结:

  板书:长和宽的比是3比2,记作3:2宽和长的比是2比3,记作2:3(3)说一说:2∶3和3∶2中,比的前项和后项分别是是几?

  (教师指出比是有序概念,颠倒比的前项和后项,意义会发生改变)

  (二)、完

  成试一试在日常生活中,我们经常用比表示两个数量之间的关系,比如这瓶洗洁液,上面的使用说明就是用比来表示的。(呈现“试一试”)(1)指图中的1∶4,问:这里的白色部分和蓝色部分分别表示什么?你知道1∶4表示什么吗?

  (2)把每种溶液里的洗洁液看作1份,水分别可以看作几份?

  (3)还可以怎样表示每种溶液里洗洁液和水体积之间的关系?(引导学生理解:比如这个1:4,表示1份洗洁液要加4份水,也就是说水的体积是洗洁液的4倍,洗洁液的体积是水的1/4。)

  三、教学例

  2(一)通过刚才的学习,我们对比已经有了一个初步的认识,下面我们再来看一个例子。(呈现例2)

  1、想一想,我们怎样求两人的速度?

  2、

  2、学生计算答案,汇报填表。

  3、明确:因为速度=路程÷时间,速度实际上表示了路程与时间的关系。我们也可以用比来表示路程与时间的关系。(出示:小军走的路程与时间的比是比是900∶15。)900∶15表示什么呢?(路程÷时间。)

  4、你能用比来表示小伟走的路程与时间的比吗?(出示:小伟走的路程与时间的比是比是900∶20)

  (二)、理解比的意义

  1、刚才我们已经得出了不少的比,仔细观察一下例2中的比:900比15,900比20,以及例1中的2比3,3比2等等,你觉得比又可以表示两个数之间什么样的关系呢(板书:两个数的比 两个数相除)

  2、教师根据学生回答再引导:例1中的比表示两个数的倍数关系,例2中的比表示路程÷时间,不管是例

  1、例2还是练习中的比都表示两个数相除。所以两个数的比到底表示两个数的什么关系?(板书:一种相除关系)

  (三)、认识“比值”、及与“比”的区别:

  1、明确了比的意义,我们一起来算一算,上述比的前项除以后项的商是多少?

  我们把比的前项除以后项所得的商叫做比值。

  2、说说这几个比值分别表示什么?

  3、讨论:同学们觉得比与比值的区别在哪里?

  (比表示两个数相除的一种关系,由前项、比号、后项组成。比值表示比的前项除以后项所得的商,比值是一个数,可以是分数、小数或整数。)

  (四)、“试一试”

  1、完成“试一试”:(学生独立完成,指名板演)

  2、教师介绍:根据分数和除法的关系,两个数的比也可以写成分数形式。例如,2∶3除了写成这种形式以外,也可以写成分数形式的比:3/2。(板书:3/2)注意这时应把它看成是一个比,而不是分数,所以先写比的`前项,再写横线表示比,最后写后项,仍应读作3比2。)

  (五)、比、除法和分数的关系

  1、让学生通过观察、比较、交流得到比与分数、除法的关系:比的前项、后项、比号、比值分别相当于除法算式或分数中的什么吗?比的后项可以是0吗?(根据学生的汇报填表)相互关系 区别比 前项 比号(:) 后项 比值除法分数

  2、完成“练一练”的1、2、3小题。

  3、完成练习十三的第4题。

  4、糖水的甜度(1)(出示:两杯糖水,并标出糖与水的质量的比,第一杯1∶20,第二杯1∶25)你知道哪一杯水更甜吗?为什么?

  (2)(出示第三杯糖水,标出糖4克,水100克。)你知道这杯糖水和刚才的哪一杯一样甜?先想一想,再与同桌交流,说说你是怎样比较的?

  (3)根据第一杯糖和水质量的比是1∶20,你能说出第一杯糖与糖水质量的比吗?

  5、知识介绍:

  同学们,其实比在我们生活中的应用是非常广泛的。你听说过著名的“黄金比吗?”(课件介绍“黄金比”)。

  五、总结:

  今天我们学习了什么?你们有什么收获吗?还有什么问题吗?

  小学数学六年级教案 篇3

  单元导学

  本单元的主要内容包括:比的意义,比的读、写法,比与分数、除法的关系,比的基本性质,求比值与化简比,按比分配。

  比的知识是学习比例相关知识的重要基础,把比单独设成单元,有利于学生从量与量之间的关系这一角度去认识比,而不仅仅从运算的角度去理解比,有助于培养学生的代数思想。

  学生在分数的意义以及分数与除法的关系的基础上学习比。从学习除法的意义、分数的意义以及分数与除法的关系到学习比的意义、比的化简、比的应用,密切联系学生已有的生活经验和学习经验,由浅入深地引导学生在独立思考、实际操作和合作交流中体会生活中存在两个数量之间比的关系,理解比的意义,鼓励学生运用合理的策略解决实际问题。

  教材注重提供多种情境,使学生经历从具体情境中抽象出比的意义的过程。注重引导学生利用比的意义解决实际问题,为后面学习百分数和正、反比例等知识奠定了基础。

  备内容

  备目标

  知识与技能

  过程与方法

  情感、态度与价值观

  1.理解比的`意义。

  2.知道比与分数、除法的关系,并能类推出比的基本性质。

  3.会求比值、化简比。

  4.能解答按比分配的实际问题。

  1.学生在理解比的意义、探索比与分数、除法之间的关系以及比的基本性质的过程中,体会类比思想、推理思想,积累数学活动经验。

  2.经历探索比的基本性质的过程,积累探究问题的方法和经验。

  3.经历运用比的知识解决有关实际问题的过程,体会用比的知识解决在生活中按比例分配的问题。

  1.体会数学知识之间的内在联系,把握数学知识的本质。

  2.经历用比描述生活现象和解决实际问题的过程,感受数学知识在日常生活中的应用价值。

  备重难点

  重点

  1.掌握比的基本性质。

  2.能运用比的知识解决有关实际问题。

  难点

  1.理解比的意义。

  2.能运用比的知识解决按比例分配问题。

  小学数学六年级教案 篇4

  知识网络

  列方程解应用题最关键是前两步:设未知数和列方程。有的同学说解方程的部分不是篇幅很长么,为什么不是关键部分呢?其实,只要仔细观察一下,就会发现,虽然篇幅很长,但只要注意到符号变化、分配律等基本运算技巧,解的过程是较容易掌握的。相反,前两步篇幅虽然短,但列方程解应用题的精华和难点却大部分集中在这里,需要用以体会。

  一般地,设什么量为未知数,最简单明了的想法是设所求为x(复杂的题目有时要采取迂回战术,间接地设未知数),当所求的数较多时,把这些所求的数量用一个或尽量少的未知数表达出来,也是很重要的。

  设完未知数,就要找等量关系,来帮助列出方程。这时需要认真读题,因为许多等量关系是隐藏在字里行间的。中文有很多字、词、句表达相等的意思,如相等、是、比多、比少、是的几倍、的总和是、与的差是等等,根据这些字句的含义,再加上其中的量用未知数表达出来,就能列出方程。

  重点难点

  列方程解应用题是用字母来代替未知数,根据等量关系列出含有未知数的等式,也就是列出方程,然后解出未知数的值,列方程解应用题的优点在于可以使未知数直接参加运算。解这类应用题的关键在于能够正确地设立未知数,找出等量关系从而建立方程。而找出等量关系又在于熟练运用数量之间的各种已知条件。掌握了这两点就能正确地列出方程。

  学法指导

  (1)列方程解应用题的一般步骤是:

  1)弄清题意,找出已知条件和所求问题;

  2)依题意确定等量关系,设未知数x;

  3)根据等量关系列出方程;

  4)解方程;

  5)检验,写出答案。

  (2)初学列方程解应用题,要养成多角度审视问题的习惯,增强一题多解的自觉性,逐步提高分析问题、解决问题的能力。

  (3)对于变量较多并且变量关系又容易确定的问题,用方程组求解,过程更清晰。

  经典例题

  例1 某县农机厂金工车间有77个工人。已知每个工人平均每天加工甲种零件5个或乙种零件4个或丙种零件3个。但加工3个甲种零件、1个乙种零件和9个丙种零件才恰好配成一套。问:应安排生产甲、乙、丙种零件各多少人时,才能使生产的三种零件恰好配套。

  思路剖析

  如果直接设生产甲、乙、丙三种零件的人数分别为x人、y人、z人,根据共有77人的条件可以列出方程x+y+z=77,但解起来比较麻烦 如果仔细分析题意,会出现除了上面提到的加工甲、乙、丙三种零件的人数为未知数外,还有甲、乙、丙三种零件各自的总件数也未知。而题目中又有关于甲、乙、丙三种零件之间装配时的内在联系,这个内在联系可以用比例关系表示,而乙种零件件数又在中间起媒介作用。所以如用间接未知数,设已种零件总数为x个,为了配套,甲种、丙种零件件数总数分别为3x个和9x个,再根据生产某种零件人数=生产这种零件的个数工人劳动效率,可以分别求出生产甲、乙、丙种零件需安排的人数,从而找出等量关系,即按均衡生产推算的总人数,列出方程 解 答

  设加工乙种零件x个,则加工甲种零件3x个,加工丙种零件9x个。

  答:应安排加工甲、乙、丙三种零件工人人数分别为12人、5人和60人。

  例2 牧场上长满牧草,每天牧草都匀速生长。这片牧场可供10头牛吃20天,可供15头牛吃10天,问可供25头牛吃几天?

  思路剖析

  这是以前接触过的牛吃草问题,它的算术解法步骤较多,这里用列方程的方法来解决。

  设供25头牛可吃x天。

  本题的等量关系比较隐蔽,读一下问题:每天牧草都匀速生长,草生长的速度是固定的,这就可以发掘出等量关系,如从供10头牛吃20天表达出生长速度,再从供15头牛吃10天表达出生长速度,这两个速度应该一样,就是一种相等关系;另外,最开始草场的草应该是固定的,也可以发掘出等量关系。

  解 答

  设供25头牛可吃x天。

  由:草的总量=每头牛每天吃的草头数天数

  =原有的草+新生长的草

  原有的草=每头牛每天吃的草头数天数-新生长的草

  新生长的草=草的生长速度天数

  考虑已知条件,有

  原有的草=每头牛每天吃的草1020-草的.生长速度20

  原有的草=每头牛每天吃的草1510-草的生长速度10

  所以:原有的草=每头牛每天吃的草200-草的生长速度20

  原有的草=每头牛每天吃的草150-草的生长速度10

  即:每头牛每天吃的草200-草的生长速度20

  =每头牛每天吃的草150-草的生长速度10

  每头牛每天吃的草200草的生长速度20+每头牛每天吃的草150-草的生长速度10

  每头牛每天吃的草200-每头牛每天吃的草150

  =草的生长速度20-草的生长速度10

  每头牛每天吃的草(200-150)=草的生长速度(20-10)

  所以:每头牛每天吃的草50=草的生长速度10

  每头牛每天吃的草5=草的生长速度

  因此,设每头牛每天吃的草为1,则草的生长速度为5。

  由:原有的草=每头牛每天吃的草25x-草的生长速度x

  原有的草=每头牛每天吃的草1020-草的生长速度20

  有:每头牛每天吃的草25x-草的生长速度x

  =每头牛每天吃的草1020-草的生长速度20

  所以:125x-5x=11020-520

  解这个方程

  25x-5x=1020-520

  20x=100

  x=5(天)

  答:可供25头牛吃5天。

  例3 某建筑公司有红、灰两种颜色的砖,红砖量是灰砖量的2倍,计划修建住宅若干座。若每座住宅使用红砖80米3,灰砖30米3,那么,红砖缺40米3,灰砖剩40米3。问:计划修建住宅多少座?

  解 答

  设计划修建住宅x座,则红砖有(80x-40)米3,灰砖有(30x+40)米3。根据红砖量是灰砖量的2倍,列出方程

  解法一:用直接设元法。

  80x-40=(30x+40)2

  80x-40=60x+80

  20x=120

  x=6(座)

  解法二:用间接设元法。

  设有灰砖x米3,则红砖有2x米3。根据修建住宅的座数,列出方程。

  (x-40)30=(2x+40)80

  (x-40)80=(2x+40)30

  80x-3200=60x+1200

  20x=4400

  x=220(米3)

  由灰砖有220米3,推知修建住宅(220-40)30=6(座)。

  同理,也可设有红砖x米3。留给同学们练习。

  答:计划修建住宅6座。

  例4 两个数的和是100,差是8,求这两个数。

  思路剖析

  这道题有两个数均为未知数,我们可以设其中一个数为x,那么另一个数可以用100-x或x+8来表示。

  解 答

  解法一:设较小的数为x,那么较大的数为x+8,根据题意它们的和是100,可以得到:

  x+8+x=100

  解这个方程:2x=100-8

  所以 x=46

  所以 较大的数是 46+8=54

  也可以设较小的数为x,较大的数为100-x,根据它们的差是8列方程得:

  100-x-x=8

  所以 x=46

  所以 较大的数为100-46=54

  答:这两个数是46与54。

  小学数学六年级教案 篇5

  教学目的:

  1、培养学生认真观察的好习惯。

  2、认识长度单位毫米、分米,初步建立1毫米、1分米长度观念,道1厘米=10毫米;1米=10分米。

  3、培养学生的动手实践能力。

  重 点:认识长度单位毫米、分米,初步建立1毫米、1分米 。长度观念,知道1厘米=10毫米;1米=10分米。

  难 点:怎样正确使用毫米、分米测量物体的长度。

  关 键:采用直观演示与动手实践相结合的方法。

  教 具:课件、米尺、学生尺 、线绳、各种小物体等。

  教学过程:

  一、设疑激趣,导入新课。

  师:每组的纸上都画有一条小线段,你们能精确量出它的长度吗?试试看!1、学生分组活动。2、汇报: 量不出小线段的长度。

  师:怎样才能量出小线段的长度?

  生:要是知道一个小格是多长就能量出。

  师:你想 怎样解决这个疑问?

  生:看书。

  师:请同学打开书60页,自学例1。

  点评:有疑才有思,通过量线段这个小环节,教师故意为学生设置疑问,激发学生探究的兴趣,每个学生都想通过自己的努力解决疑问,积极性非常高!

  二、合作探究,形成规律。

  师:谁能告诉老师一个小格是多长?

  生:一个小格长1毫米。

  师:你能具体说说是怎么规定的吗?

  生:1厘米中间的每一个小格是1毫米。

  师:我们一起看大屏幕:(教师自制课件动态演示)。

  师:这是一个放大的1厘米,咱们一起数一数一共有多少个小格?(一边数,一边动态演示)这一个小格的长度就是1毫米。2个小格是几毫米?5个小格是几毫米?1厘米里面有几个1毫米?那么1厘米等于多少毫米?

  师:量一量,一分硬币有多厚?

  生:1毫米。

  师:用手势表示1毫米的长度?

  以小组为单位,量一量你身边的小物体的长度或厚度,要有分工,有记录,分工明确。

  学生分组活动。

  学生以小组的形式汇报。

  师:当我们量的物体比较小或要求我们量的比较精确时要用毫米作单位,当要量比较长的物体时,就要用一个比毫米大的多的长度单位,想知道它是什么吗?打开书61页,自学例2。

  ( 1)学生自学。(2)学生汇报:10厘米的长度就是1分米。

  师:1分米等于多少厘米?1米等于多少分米?

  继续以小组为单位,看看那些物体可以以分米作单位来量一量。(1)学生分组活动。(2)学生以小组为单位汇报。

  用手势表示1分米的长度。量出3分米长度的`绳子给大家看。

  想一想,这节课我们学习了哪些知识?到现在为止,我们已经学习了那些长度单位?

  (大屏幕出示已学过的长度单位)

  师:观察每相邻两个长度单位之间的进率是几?你能按照从小到大的顺序排列出来吗?这节课有没有不明白的地方?老师出题考考你好吗?

  点评:在新授环节我主要采用了如下的方法:自主法、合作法、探究法、实践操作法,在学生自主学习的基础之上,为学生提供合作、探究的机会,帮助学生建立1毫米、1分米的长度观念。比如以毫米、分米为单位量身边物体的长度或厚度,既培养了学生合作精神,又培养了学生动手实践的能力,并且充分联系学生生活实际,使学生对所学知识产生亲切感,学生积极性高,学习效果也很好。

  三、巩固练习

  1、填合适的长度单位。

  (1)蜡笔长6( )。 (2)跳绳长2( )。

  ( 3 )课桌高7( )。 (4)粉笔长75( )。

  (5)别针长34( )。 ( 6)小红身高120( )。

  2、判断

  (1)小名身高134米。( ) (2)一根绳长15分米。( )

  (3)一块橡皮厚1米。( ) (4)10分米=1厘米。 ( )

  3、儿歌

  长度单位真不少,米、分米、厘米和毫米。

  有的长,有的短, 有的不长也不短。

  1米=10分米, 1分米=10厘米,1厘米=10毫米。

  一定要:牢牢记,灵活用。

  点评:在巩固练习阶段 ,采用了学生喜欢的一些形式,如:选择、判断、儿歌等,既检验了学生对本课所学知识,及时得到反馈信息,同时也调动了学生的积极性,使学生在玩中学,学中玩,寓教寓乐。

  小学数学六年级教案 篇6

  教学内容:教科书第64页例7,练习十四的第3一10题。

  教学目的:使学生学会进行应用乘法分配律简便计算,提高学生的逻辑思维能力。

  教学难点:应用乘法分配律简便计算

  教具准备:将复习中的题目写在小黑板上。

  教学过程:

  一、复习

  教师出示试题:

  1.(35+65)×37 2.35×37+65×37

  3.85×(174+26) 4.85×174+85×26

  5.(80+8)×25 6.80×25+8×25

  7. 32×(200+3) 8.32×200+32×3

  “根据乘法分配律,都有哪些算式可以用等号连接起来?为什么?”

  教师:根据乘法分配律,第1个算式和第2个算练功的得数应该一样,第3个算式和第4个算式的得数也应该一样。下面大家一起来计算。第1、2、3组的同学的第1题和第3题,第4、5、6组的同学第2题和第4题。大家抓紧时间做,比一比看哪几个组的同学算得快。

  “哪几组的同学做的快?想一想,为什么第1、2、3组的大部分同学都那么快就算出了得数?”多让几个学生说一说。

  教师:第1题和第3题中,两个数的`和都是整百数,整百数乘以一个数当然是很方便的。而第2题和第4题都要先算出两个乘积再相加,比较麻烦。

  教师:下面还有两组等式,大家再来计算一下,第1、2、3组做第5、7题,第4、5、6组做第6、8题。

  “这次哪几组的同学做得快?想一想,这次为什么第4、5、6组的大部分同学都做得快了?”

  教师:第6题和第8题分别乘得的两个积,都有整百数,计算比较方便。从上面的计算可以看出,应用乘法分配律可以使一些计算简便。

  二、新课

  1.教学例7

  (1)教师出示例题:计算9×37+9×63。

  教师:这道题是要计算两上乘积的和。

  “仔细看一看这道题里的两上乘法计算中的因数有什么特点?”

  (两个乘法计算有相同的因数9,另外两个因数是37和63,它们的和正好是100。)

  “联系上面的复习题,想一想这道题怎样做才能使计算简便呢?“(先把37和63加起来,是100,再同9相乘,得900。)

  “这是应用了什么运算定律?”

  教师,这道题告诉我们,有些题可以应用乘法分配律使计算简便。再来看一看怎样的计算才能应用乘法分配律使计算简便呢?先让学生说一说。

  教师概况,首先,要计算的是要两个乘积的和,两个乘法计算要有一个相同的因数;另外两个因数的和又是整百或是整十数,这样的计算我们就可以应用乘法分配律使计算简便。

  (2)教师出示例题:102×43

  教师:这道题是一个三位数乘以一个两位数,我们可以用笔算进行计算,但是比较麻烦。

  “想一想,这道题怎样计算比较简便,使我们能够用口算就能算出得数呢?”(给学生留出思考时间。)

  教师:从上面的复习题我们可以看出,如果两个加数分别要乘以一个数,而这两个加数中有一个整十数或整百数,就先把这两个加数分别乘以那个因数再相加比较简便。现在的题目是102乘以43,想一想,能不能把其中一个因数拆成两个数的和,并且使其中一个加数是整百、整十数?多让几个学生发言。教师肯定学生的回答后。

  板书:102×43

  =(100+2)×43

  =100×43+2×43

  =4386

  “上面计算中的第二步根据是什么?”(乘法分配律)。

  教师概括:两个数相乘,如果其中一个因数可以拆成两个数的和,并且其中一个加数是整百、整十数,这时应用乘法分配律可以使计算简便。

  三、课堂练习

  做练习十四的题目。

  1.第3题,2.让学生口算。当计算101×57和45×102时,3.提问:“你是怎样做的?得多少?”

  2、第4题,5.先让学生自己计算。核对时让学生回答。

  “如果按运算顺序计算,应该先算什么?”

  “怎样计算简便?根据是什么?”

  第4小题,如果学生有困难,教题先把算式38×?=38。学生回答后教师把“38×?”中的“?”改为“1”。

  “下面应该怎样算呢?”让每个学生先做在自己的练习本上,然后再请一个学生口述计算过程。

  3、第7题,7.先让学生独立做,8.然后集体核对,9.核对的要让学生说一说是怎样做的。当核对“26×3”时,10.学生说出计算方法后,11.再让学生说一说计算过程。学生发言后,12.教师说明:26乘以3可以写作(20+6)×3,13.根据乘法分配律等于20乘以3的积再加6乘以3的积,14.这实际上是应用了乘法分配律。这就是说,15.我们过去学过的乘法口算有些应用了乘法分配律。这道题中的第7小题应用乘法结合律比较简便,16.第4、6、8、9题应用乘法分配律比较简便。

  4、 第9题和第10题,18.先让学生独立做,19.核对时要让学生说出每个算式的意义。

  5.提前做完的学生可以做第l9*题。当学生想出一种算法后,还要引导学生想一想其它的做法。这道题的做法有:(80—30)×110一30×110;

  (80—30—30)×110;

  (80—30×2)×110。

  四、作业

  练习十四的第5、6、8题。

  小学数学六年级教案 篇7

  课前准备

  教师准备PPT课件

  教学过程

  ⊙谈话导入

  同学们,在数学的学习中,我们有时会遇到很复杂的题,如何将这些题化难为易呢?这时候我们就要用到数学思想和方法。数学思想和方法可以帮助我们有条理地进行思考,简捷地解决问题。

  ⊙引发思考

  在六年的数学学习中,你们知道了哪些数学思想和方法?能举例说一说吗?

  ⊙回顾与整理数学思想和方法

  1.组织学生小组讨论学过的数学思想和方法,并巡视指导。

  2.学生汇报,并借助PPT课件将学生的汇报进行整理、展示。

  预设

  常用的数学思想和方法:

  (1)转化的思想方法:这是解决数学问题的重要策略。是由一种形式变换成另一种形式的思想方法。如立体图形的等积变换、解方程的同解变换、公式的变形等。在计算中也常常用到转化,如甲÷乙(0除外)=甲×;除数是小数的除法可以转化成除数是整数的除法来计算。在解应用题时,常常对条件或问题进行转化,通过转化达到化难为易、化新为旧、化繁为简、化整为零、化曲为直等。

  (2)数形结合思想方法:数和形是数学研究的两个主要对象,数离不开形,形离不开数。一方面抽象的数学概念,复杂的数量关系,借助图形使之直观化、形象化、简单化;另一方面复杂的形体可以用简单的数量关系表示。在解应用题时常常借助画线段图帮助分析题中的'数量关系。

  (3)对应思想方法:两个集合元素之间的联系的一种思想方法。小学数学一般是一一对应的直观图表,并以此孕伏函数思想。如直线(数轴)上的点与表示具体大小的数的一一对应,又如分数应用题中一个具体数量与一个抽象分数(分率)的对应等。

  (4)代换思想方法:它是方程解法的重要原理,解题时可将某个条件用别的条件进行代换。

  (5)列表法:用表格的形式表示题中的已知条件和问题,使条件和条件之间,条件和问题之间的关系条理化、明朗化,有利于探求解题的思路,从而达到解决问题的目的。

  ……

  ⊙典型例题解析

  例16个点可以连多少条线段?8个点呢?找找规律,根据规律,你知道12个点、20个点能连多少条线段吗?请写出算式。想一想,n个点能连多少条线段?

  分析两点确定一条线段,即每两点之间都能连成一条线段。从2个点开始,逐渐增加点数连一连,亲自动手操作,并列成表格加以对照,从而找出规律。

  点数

  增加条数

  2

  3

  4

  5

  总条数

  1

  3

  6

  10

  15

  通过观察发现:2个点可以连成1条线段,从2个点开始,以后每增加1个点,这个点和原有的每个点都能连成1条线段,所以原来有几个点,就会相应地增加几条线段。即:

  2个点连成线段的条数:1条

  3个点连成线段的条数:1+2=3(条)

  4个点连成线段的条数:1+2+3=6(条)

  5个点连成线段的条数:1+2+3+4=10(条)

  6个点连成线段的条数:1+2+3+4+5=15(条)

  8个点连成线段的条数:1+2+3+4+5+6+7=28(条)

  推出:n个点连成线段的条数:1+2+3+4+…+(n-1)==n(n-1)(条)

  根据规律可以推出12个点、20个点能连成的线段的条数。

  解答6个点连成线段的条数:1+2+3+4+5=15(条)

  8个点连成线段的条数:1+2+3+4+5+6+7=28(条)

  12个点连成线段的条数:×12×(12-1)=66(条)

  20个点连成线段的条数:×20×(20-1)=190(条)

  n个点连成线段的条数:1+2+3+4+…+(n-1)==n(n-1)(条)

  小学数学六年级教案 篇8

  教学目标

  1、通过折纸活动,探索并发现圆是轴对称图形,理解同一个圆里半径和直径的关系

  2、进一步理解轴对称图形的特征,体会圆的对称性。

  3、在折纸找圆心验证圆是轴对称图形等活动,发展空间观念。

  教材分析

  重点

  理解同一个圆的半径都相等,同一个圆里半径和直径的关系,并体会圆的对称性。

  难点

  在折纸的过程中体会圆的特征

  教具

  教学圆规

  电化教具

  课件

  一、 创设情境:

  亮亮借助光盘画了一个圆,剪出了一个圆纸片,这个圆的圆心在哪里呢?他很快找出来了。你有办法找出来吗?

  二、探索活动:

  1、引导学生开展折纸活动,找到圆心。

  (1)自己动手找到圆心。

  (2)汇报交流找圆心的'过程,并说出这样做的想法。

  2、通过折纸你发现了什么?理解圆的对称性。

  (1)欣赏美丽的轴对称图形。

  (2)再折纸,体会圆的轴对称性,画出圆的对称轴。

  (3)圆有无数条对称轴。对称轴是直径所在的直线。

  3、通过折纸你还发现了什么?理解同一个圆里直径和半径的关系。

  (1)边折纸边观察思考同一个圆里的半径有什么特点?

  (2)边折纸边观察思考,同一圆里的直径与半径有什么关系?

  (3)引导学生用字母表示一个圆的直径与半径的关系。

  三、课堂练习。

  1、让学生独立完成试一试做完后交流汇报。

  2、完成练一练进一步巩固圆的半径与直径的关系。

  3、完成填一填

  让学生独立观察思考并试着填一填,有困难的向老师或同桌请教。

  汇报交流,说答题根据。

  4、完成书后第3题。

  四、课堂小结。

  引导学生小结本节内容。

  学生利用经验很容易找到圆心,如果让学生说一说为什么对折再对折就可以找到圆心学生很难说清楚。教学中通过折纸观察思考,找到答案。交流汇报,从中进一步理解圆的轴对称,一个圆的半径都相等。

  欣赏美丽的对称图形引导学生对以学过的轴对称图形进行整理,进一步理解轴对称图形的特征,在对比中发现这些轴对称图形的不同特点,从而突出圆具有很好的轴对称性。

  多次折纸的过程中探索,发现,验证。操作中体会交流,体会圆的特征,发展空间观念。

  个别学生做试一试的题目会有困难,注意个别指导。

  板书设计

  圆的认识(二)

  我们的发现

  同一个圆里所有的半径都相等

  同一个圆里d=2r或r=1/2d

  圆有无数条对称轴,对称轴是直径所在的直线

  学生利用经验很容易找到圆心,如果让学生说一说为什么对折再对折就可以找到圆心学生很难说清楚。教学中通过折纸观察思考,找到答案。交流汇报,从中进一步理解圆的轴对称,一个圆的半径都相等。

  小学数学六年级教案 篇9

  教学内容:课本第50页例2;练一练;《作业本》第22页。

  教学目标:

  1、理解并掌握比的基本性质,知道最简单的整数比,会根据比的基本性质将比化成最简单的整数比。

  2、培养学生自主迁移、自主构建知识的能力。

  教学重点:比的基本性质和化简比

  教学过程:

  一、准备练习:

  1、求下列各比的比值。

  12:201:1:1.5:2.5

  2、在()里填上适当的数。

  ⑴=()()=():()

  ⑵====

  (第1题:分数与除法的关系;第2题:分数的基本性质)

  3、复习比与除法、分数的关系。(完成上堂课的表格)

  二、教学新课:

  1、引入。

  分数基本性质是怎样的?除法的商不变性质又怎么说?根据分数、除法和比的关系,你能猜出比的基本性质应该是怎样的呢?

  (1)学生试着叙述。

  (2)反馈小结。

  分数基本性质、除法的商不变性质中的`都有0除外,为什么?比的基本性质要不要也加上这个条件?应该怎么说才最完整呢?

  2、看书验证自己的猜想。P50页。

  3、什么是最简单的整数比?

  (1)下面哪些是整数比?哪些整数比最简单?为什么?

  6:1012:210.3:0.40.25:1

  3:54:73:4:

  (2)教师小结:

  像3:5、4:7、3:4等这些整数比,比的前项和后项都是整数,而且这两个数是互质数,,我们称这样的比为最简整数比,化成最简整数比简称化简比。

  4、教学例2。化简比。

  (1)应用比的基本性质可以把比化成整数比。

  自学课本P50、51例2、例3)

  (2)小结:

  ①整数比化简的方法是把比的前项和后项同时都除以它们的最大公约数。

  ②分数比化简的方法是先把前、后项同时都乘以分母的最小公倍数。

  (3)试一试。

  三、巩固练习:练一练

  四、小结:

  今天你学会了什么?比和比值的区别怎样?(比值是一个数,可以用分数、小数、整数来表示;而比必须清楚的看出比的前项和后项,只能用比的形式表示。)

  五、《作业本》第22页。

  小学数学六年级教案 篇10

  在当前的计算教学中,借助情境以及直观的动手操作理解算理并不是计算教学中的难点。问题在于,教师们注意了算理的揭示,但往往轻描淡写地很快揭示所谓的简化算法。这样的教学往往导致了在揭示算理到抽象算法之间出现断层,由此造成学生对计算的技能掌握不牢,对知识的运用、迁移不够。最近,笔者结合两位数乘一位数一课的教学,对苏教版第一学段加法、乘法的笔算教材的编排进行了深入的思考。

  思考一:学生为何不接受乘法的原始竖式?

  两位数乘一位数的教材编排,首先是揭示两位数乘一位数的算理,随后呈现乘法的原始竖式,最后优化简单的竖式书写方法。编排原始竖式的意图,是为了加深学生对算理的理解,同时也为学生架设一条桥梁,帮助学生从直观算理过渡到抽象的算法。然而在实际的教学中,学生结合情境图能较好地理解算理,但是在尝试笔算时往往就跳过原始竖式直奔简化竖式。《江苏教育》20xx年第3期杨春燕老师《两位数乘一位数教学例谈》一文中对这种现象的解释是,学生对加法与乘法的关系、表内乘法、位值原则等的知识储备能够使他们自我跨越。事实真的如此吗?笔者在不少课堂上看到这样的现象:学生在自主尝试出简化的竖式计算形式后,教师为了强化算理,尊重教材的编排,又向学生呈现出乘法的原始竖式,而这个时候,学生往往一片哗然,并不认同这一原始竖式。可见,学生虽然能尝试出竖式的简化形式,但并没有实现对原始竖式的真正跨越。那么,学生为何不接受乘法的原始竖式呢?按理说,只要理解了算理,过渡到原始竖式是水到渠成的事情,而过渡到简化的竖式,思维的跳跃性反而很大。带着这个问题,笔者在组内两位年轻教师开设同课题校级公开课时进行了实验统计。(由于是临时将后面的内容抽调上来教学,因此基本不存在家长提前辅导的情况。)两个班96名学生在尝试竖式时,只有一名学生用了原始竖式,原因是该学生看了数学书,其他95名学生都直接采用简化的竖式进行计算,并且我预设的 将前面口算的结果直接写在竖式横线下的现象无一例发生,学生在书写计算结果时都是先写个位,再写十位。我顿时醒悟:学生有着丰富的加法笔算的经验,先算个位,再算十位的笔算过程,横线下面直接书写计算结果的外在形式,都促使了学生在探究乘法笔算过程中自主迁移了这些知识经验。这种情况下,学生自然就难以接受乘法的原始竖式了,而教师在学生自主探究后再来教学原始竖式的意义也就不大了。

  思考二:加法原始竖式的教学意义何在?

  教材在编写两位数乘一位数时引进了乘法的原始竖式,这引起了我一系列的思考:加法笔算的教材编写为何忽略了原始竖式?根据教材目前的编排,加法笔算的教学状况又是怎样的?如果在教学加法笔算时也引进原始竖式,这样的教学意义何在?

  先摘录一个笔算加法的教学片段:

  师:43+31等于多少呢?先用小棒摆一摆。

  学生操作,得出43+31=74。

  师:你是怎么想的.?

  生:40+30=70,3+1=4,70+4=74。

  师:谁能在计数器上表示43+31?

  生拨计数器:先在计数器上拨43,再拨上31,结果等于74。

  结合拨珠,教师引导学生说出算理:43+30=73,73+1=74。(这个算理相对难一些)

  师:43+31,我们还能用竖式帮助计算。

  教师板书竖式的框架,让学生尝试接下去计算。

  学生的尝试的情况可以分成三种:(1)直接在横线下书写刚才口算的结果74;(2)先算十位上4+3=7,再算个位上3+1=4;(3)先算个位再算十位。

  师:在竖式计算时,我们一般从个位算起,谁来把计算的过程跟大家讲讲?

  生1:先算个位上3+1=4,4写在个位上,再算十位上4+3=7,7写在十位上。

  师:刚才这位同学的方法就是竖式计算的方法,大家掌握了吗?

  同上面这个教学片段一样,很多教师在揭示算法时不自觉地将算法同算理剥离开来,诚然,站在成人的角度,笔算加法就是这么简单:个位同个位相加,十位同十位相加,几乎没有任何需要解释的理由。但殊不知这样教学,学生尽管能较快地掌握加法笔算的方法,但是这种机械、形式化地操作,让学生在计算时不自觉地脱离算理的有效支撑,学生的计算仍然只是稀里糊涂地计算,甚至当学生学习乘法笔算时,尽管能娴熟地迁移加法笔算的方法,但同时导致了乘法笔算也只是停留在机械化操作的层面。因此,笔者认为,加法笔算教学,增加原始竖式的教学十分有必要。在教学一年级(下册)加法笔算时,学生交流完43+31的口算算理之后,我让学生尝试进行竖式计算。交流时,有不少学生是直接将答案74抄写在横线下面的,也有不少学生知道从个位算起,再算十位,列出了标准的竖式。这个时候我就将原始竖式呈现出来:

  让学生思考:根据刚才口算的三个步骤,竖式计算过程中也应有这样的三个步骤,而你们在计算40+30=70时,怎么就直接把7写在十位上面去了呢?学生一开始愣住了,如实告诉我:家里爸爸妈妈就是这么教的,书上也是这么写的。我就继续让学生思考:爸爸妈妈教的竖式以及书上的竖式这样算有没有道理呢?我随即同学生做了几个实验:我让学生用爸爸妈妈教的方法做几道题,我用原始竖式计算,放到黑板上一比较,学生发现,计算结果都一样,而原始竖式看起来计算的步骤更清楚,但是写起来较麻烦。并且学生指出,原始竖式中一位数加上整十数,得数的个位上还是原来的一位数,十位上的数跟整十数十位上的数相同,所以就能省略计算的步骤,把竖式写的简单些。经历了对原始竖式的观察、比较、优化,我相信学生对笔算两位数加两位数的算法就不再是操作性理解了。

  非常巧合的是,最近笔者在翻看以前的杂志时发现,上海小学数学教材编写组在20xx年第6期《小学青年教师》发表的《关于整数加减法竖式计算的处理思路》一文中也指出:根据新的学力观,我们不应该仅仅重视竖式一般的形式,也应该重视使用竖式表现思考过程。而这种表现了思维过程的竖式形式其实就是原始竖式。加法笔算时引进原始竖式,不但有效沟通了直观算理到简化算法的过渡,更让学生对数和数位结合的位值原则有了初步的体验,这为学生以后的乘除法的笔算学习打下了坚实的基础。

  思考三:笔算乘法在沟通算理和算法时以什么为突破口?

  学生有了将加法的原始竖式过渡到简化竖式的经验后,教学两位数乘一位数时,怎样由原始竖式过渡到简化竖式已经不再是本节课的难点了,因为加法同乘法的简化过程、方法都是相通的,再加上学生在丰富的加法笔算经验的引领下,完全可以自主探究出乘法竖式的简化写法,因此,教学乘法的笔算时,我们不妨重新改编教材,将原始竖式这块内容割舍掉。而割舍这一内容,需要寻找到一种比原始竖式更能有效沟通算理和算法的突破口。

  二年级(下册)第四单元中教学三位数连加,练习里有这样一道题(42页):三角形花坛的三条边一样长(每条边长268厘米 ),花坛栏杆的长一共多少厘米?解决这道题时,不少学生列了乘法算式2683,可是乘法竖式不会计算,当时我就引导学生借助加法竖式进行计算,并且在加的过程中让学生思考怎样算能算的更快,学生在计算每一位上三个数相加时自然运用口诀进行简便计算。这道题给了我很大的启发,学生尽管是在用加法竖式进行计算,可是运用乘法口诀帮助计算的方法不就是乘法笔算的方法吗?因此,在学生初步具备数和数位位值知识的基础上,在充分理解算理的前提下,笔算几个相同加数连加的简便算法就是提炼乘法笔算方法的最佳突破口。当然,我们在重组教材时,还需要考虑到,如何促使学生在加法笔算时自觉采取简便算法,以促使这一算法有效迁移到乘法的笔算中。

  在使用现行教材例题进行教学两位数乘一位数,交流142的算理时,学生能很快说出:14+14=28。但当教师问及还能怎样想时,很少有学生能想到先算102=20.再算42=8,再算20+8=28。细细分析发现:学生在解决142时,往往把14看做一个整体,两个14相加,学生能很快口算出结果。但是教学142的笔算,需要支撑的是第二种算理,因此教学时,老师往往根据教材的编排想方设法引导学生再用局部分解的眼光来思考问题,(把14分成10和4,142就是把2个10和2个4合起来),这显然不太符合学生的思维常态,因此课堂进行到这一环节时常常会冷场。同时,由于计算2个14比较简单,在尝试乘法笔算时不排除会有部分学生的计算仅仅停留在加法计算的层面上,而没有内化到乘法上。这就导致这部分学生在后面的练习中出现计算步骤混乱、计算方法混淆等情况。

  于是,我们尝试调整例题中的数量,促使学生在口算时用先分解再综合的策略解决问题。如可以改成每只小猴采32只桃,3只小猴一共采多少个桃?这样,学生在口算3个32相加时难度相对大些,学生必然会采用分解的策略:先算303=90,23=6,再采用综合的策略:90+6=96。在明确算理后,让学生用连加的笔算验证刚才的口算过程,并且让学生思考怎样算能算的更快。在运用口诀进行加法竖式的简便计算后,让学生带着问题思考:如果让你自己尝试用乘法竖式计算323,你会从这个连加竖式中得到哪些启发呢?学生边思考边进行乘法竖式的探究。在此基础上,沟通加法笔算与乘法笔算的相通之处,进一步明确算理、巩固算法。在交流乘法笔算的计算过程时,教师让学生说说每一步计算的算理,并引导学生及时同加法竖式联系起来,使学生明确,乘法中的每个计算步骤都能在加法竖式中找到,并且用到的口诀也是一致的。

  3.改编重组教材的可行性再思考:结合几个相同加数连加的笔算,学生在探究笔算两位数乘一位数(不进位)时,对算理的理解更深入,对算法的掌握更清晰。这一突破口对后继学习的两位数乘一位数(进位)产生的优势更明显。现行进位乘的教材从原始竖式过渡到有进位的简化竖式,这个过程有相当大的跳跃性,既有中间计算步骤的简化,又有进位方法的提炼,仅仅从原始竖式中获得启发,让学生自主提炼出简化的进位乘,难度比较大。相比而言,将连加竖式的简便算法迁移到简化的进位乘,更能促进学生自主迁移、运用已有的计算经验,从而有效拓宽探究的空间,增强探究的欲望,发展学生的思维。以243的竖式为例:

  师:这两种竖式在计算时有什么联系?

  生1:都是先算3个4相加,再算3个20相加,再把它们合起来,因此,计算的结果相同。

  生2:计算过程中用到的口诀都相同。

  生3:进位的方法也相同:都是个位満十,向十位进1。

  上面的教学片段证实:以笔算加法的简便计算作为教学笔算乘法的突破口,更能有效沟通算理与算法,促进学生的知识迁移。这样组织教学,拓展了学生后继学习新知的探究空间,促进了学生对知识结构的疏理、重建,提升了数学思维、能力的发展,让学生明明白白地学会计算。

  小学数学六年级教案 篇11

  教学内容:人教版数学第十二册《圆柱的体积》。

  教学目的:

  1、理解圆柱体积的意义。

  2、初步掌握圆柱体积的计算方法,会计算圆柱的体积。

  3、了解圆柱体积的推导过程。

  4、通过教学,培养学生合理猜测能力、灵活的计算能力,发展学生的空间观念、提高运用所学知识解决简单的实际问题的能力。

  教学重点:会计算圆柱的体积。圆柱体积计算公式的推导。

  教学难点:圆柱体积计算公式的推导。

  教具准备:圆柱体、圆柱形的胡萝卜、刀等。

  一、复习旧知,调动学生的积极性。

  师:请同学们回忆,圆的面积公式是怎样推导出来的?

  生: (1、将圆分成若干等份,拼成一个近似长方形。2、把圆分的等份越多就越接近长方形。)

  师:鼓励。(方向要明确,有促进,鼓励学生积极参与,参与合作)

  多媒体显示:把圆平均分成若干份,拼成一个近似长方形。

  师:什么叫体积?常用的体积单位有哪些?(立方厘米、立方分米、立方米等)

  生:略。

  师:(表扬,能比划一下1立方厘米、1立方分米、1立方米多大吗?)

  师:长方体的体积怎样计算?

  生:略。 师板书。长方体的体积=底面积×高

  二、导入新课。

  1、师:根据体积的含义,想一想,什么叫圆柱的体积?

  生:略

  师:(出示任意圆柱)你能估计一下这个圆柱的体积吗?(师相机鼓励、指导,更多的学生参与。)

  师:拿出你们准备的圆柱,同桌估计一下体积,记录下来。

  师:如果你想得到准确的体积,该怎样计算?(学生去猜测,师进行指导、鼓励。)

  2、(引导学生完成猜测体积公式)

  (如果学生猜对)师:怎样证明你的猜测是对的呢?(师要等待)

  (如果学生不能回答)师:能转化成我们学过的立体图行吗?

  3、学生尝试。

  (各小组合作,分好工,用课前准备好的萝卜或其他试切拼,教师尽可能多参加每个小组的活动,进行指导。)

  (教师尽可能地参加与多组活动,并指导组与组之间的互评)

  4、集体交流。

  师:自己认为成功的小组请举手,不管是成功还是失败,我们都能从中受到一些启发。失败了,下次再来。请成功的小组介绍一下你们是怎样拼的。

  生:略。

  师:鼓励。指导。

  师:切拼前后,什么变了?什么没变?(小组讨论)

  (教师相机教学)板书:圆柱的体积=底面积×高

  师:这样的证明你们信吗?(信 、不信)

  师:怀疑好,为什么?(辩论,时间不要长。让学生大胆谈自己的.想法,培养学生的能力。)

  (字母推导)

  三、知识的应用。

  师:计算圆柱的体积需要哪两个条件?(略)

  (出示例题,学生试做)指名(后进生两两合作)板演。学生评价,注意保护不足者。

  师:认为自己没有错误的同学举手。(回应课开始的估计,拿出引入时估算体积的圆柱。)

  师:如果请你测量所需要的数据,你打算测哪些数据比较方便,底面积吗?

  (当然底面积不能一下测出)(半径或直径,和高)

  师:同桌合作测量并计算你手里的圆柱体积。(完后,介绍结果并和你的估计进行比较,看是否接近。)(小于一百立方厘米的举手。)

  四、小结。

  师:通过今天的学习你们有哪些收获?还有哪些问题?

  (生小结。师补充。)

  小学数学六年级教案 篇12

  教学内容:教科书第52页练习十二的第69题。

  教学目的:通过练习,使学生进一步熟悉圆锥的体积计算。

  教学过程:

  一、复习

  1.圆锥的体积公式是什么?

  2.填空。

  (1)一个圆锥的体积是与它等底等高的圆柱体积的

  (2)圆柱的体积相当于和它等底等高的圆锥体积的( )倍。

  (3)把一个圆柱削成一个最大的圆锥,削去部分的体积相当于圆柱的 ,相当 于圆锥的( )倍。

  二、课堂练习

  1.做练习十二的第6题。

  教师出示一个圆锥形物体,让学生想一想怎样测量才能计算出它的体积:

  让学生分组讨论一下,然后各自让一名学生说说讨论的结果,最后归纳出几种行之有效的测量方法。例如,要求一个圆锥物体的体积,可以先用软尺量出底面圆的周长,再求出底面的半径,进而求出底面积,然后用书上介绍的方法,用直尺和三角板

  测量出圆锥的高,这样就可以求出圆锥的体积。

  2.做练习十二的第7题。

  读题后,教师可以先后提问:

  这道题已知什么?求什么?

  要求这堆沙的重量,应该先求什么?怎样求?

  指名学生回答后,让学生做在练习本上,做完后集体订正。

  3.做练习十二的第8题。

  读题后,教师可提出以下问题:

  这道题要求的是什么?

  要求这段钢材重多少千克,应该先求什么?怎样求?

  能直接利用题目中的数值进行计算吗?为什么?

  题目中的单位不统一,应该怎样统一?

  分别指名学生回答后,要使学生明白这里要先将2米改写成200厘米,再利用圆柱的体积计算公式算出钢材的体积是多少立方厘米,然后再求出它的重量。最后计算出的结果还应把克改写成千克。

  4.做练习十二的第9题。

  读题后,教师提问:这道题要求粮仓装小麦多少吨,应该先求什么?

  要使学生明白,应该先求2.5米高的小麦的体积,而不是求粮仓的体积。

  让学生独立做在练习本上,做完后集体订正。

  三、选做题

  让学有余力的学生做练习十二的第10*、11*、12*题。

  1.练习十二的第10*题。

  教师:这道题要求圆锥的体积.但是题目中没有告诉底面积,而只是已知底面周长和高。请大家想一想,应该怎样求出底面积?

  引导学生利用C=2r可以得到r= 。再利用SR,就可以求得S=( )。再利用圆锥的体积公式就可以求出其体积。

  2.练习十二的第11*题。

  这是一道有关圆柱、圆锥体积的比例应用题。

  可以用列方程来解答。利用题目中圆锥和圆柱的'体积之比,可以建立一个比例式。

  设圆柱的高为x厘米。

  =

  X=9。6

  (注意:由于圆锥和圆柱的底面积S都相等,所以计算中可以先把S约去。)

  3.练习十二的第12题。

  这道题是拆分组合图形,引导学生仔细分析图形,不难看出它是由等底的圆柱和圆锥组合而成的:从图中可以看出,圆柱和圆锥的底面直径都是16厘米,而圆柱的高是4厘米,圆锥的高是17厘米。然后再根据圆的面积公式及圆柱和圆锥的体积公式,就可以求出这个组合图形的体积了。

  小学数学六年级教案 篇13

  一、教学目标

  1.在拼搭和观察立体图形的实践活动中,培养学生的观察、操作和空间想像能力。

  2.在拼搭立体图形的实践活动中,体验并初步学会用上、下、左、右、前、后等词描述正方体的相对位置。

  3.学生通过实践活动,发展与同伴合作的意识,获得积极的数学学习情感。

  二、教材分析

  本单元的教学内容具有活动性、过程性和体验性的特点。这节课学生在搭立体图形的过程中观察、探索,根据自己的实践体验、感悟从不同的角度观察立体图形所看到的形状不同,并且用语言描述物体的相对位置,发展空间观念。

  这节课由4个实践活动组成。

  1.训练注意力。

  2.根据指令搭立体图形。

  3.通过提问来判断并搭出立体图形。

  4.根据指令用长方体、正方体、球搭立体图形。

  三、学校及学生状况分析

  我们的学生来自城市。在一年级下学期,学生学习了从两个方向观察简单的物体;在二年级上学期,学生又学习了从三个方向观察简单的物体。学生在一、二年级所观察的都是具体的事物,如汽车、房子等,在此基础上,这节课学生学习从三个方向观察立方体,不再是具体的实物,而是抽象的立体图形,而且还要求学生用具体语言描述物体的相对位置。学生已经有了生活经验、实践活动经验,再通过动手操作、实物观察、想像、描述等活动,学生的空间想像能力就可以得到进一步发展。

  四、教学设计

  (一)活动一:训练注意力

  同学们,我们先来做一个小游戏。请大家根据老师的口令行动起来,老师请两位同学在讲台上表演。

  请你摸自己的左耳朵,摸右腿,摸左眼睛,摸右肩。

  请你用右手摸你的右腿,用左手摸你的右眼睛。

  请你用左手指前面,指下面,指后面,指左面……

  (二)活动二:根据指令搭立体图形

  1.创设情境。

  同学们,我们的后操场工地上有许多叔叔总是在忙忙碌碌的,你知道他们在干什么吗?

  说得好,他们正在为我们盖新的教学楼。半年以后,我们就可以搬进宽敞明亮的新教学楼了。同学们,你知道在盖大楼之前要先做什么吗?对,要由设计师精心设计好大楼的图纸,比如一共有几层,每个房间有多大面积、几个窗户等等,然后才由建筑工人按照图纸去盖,那么今天的数学课我们就来当设计师和建筑工人,一起来搭房子,好吗?

  2.唐老师设计了一栋大楼,想请同学们用准备好的立方体搭一搭,比比哪个同学能够理解老师的意思,搭出符合要求的房子来。我请两个同学上台来搭,其他同学在下面搭。

  横着放3个方块,在中间方块的上面放一个,把右面的方块拿去。

  (要注意每完成一步都要及时反馈,发现问题立刻纠正。)

  同学们,你们搭的和唐老师设计的完全相同,大家都很棒,理解了我这个设计师的意思。大家都是非常合格的建筑工人。

  3.大家想想,老师刚才给你们发了几条指令?最优秀的设计师要尽可能地用少的指令指挥建筑师,我们看看哪些同学能够做到这一点。下面我请一名同学做设计师,在讲台下面的小凳子上搭一座房子。(请一名同学在讲台下面设计,注意不让其他同学看到他的设计情况。)

  李想设计师,请你说说你的大楼是怎样设计的,其他同学作为建筑工人,咱们看看谁最聪明,能够很快明白设计师的意图。

  4.同学们同桌两个人合作,一个人做设计师,先自己搭出一栋大楼,注意用书挡住不要让建筑工人看到,然后设计者用尽可能少的指令让建筑工人搭出你设计的大楼。做完后同桌互换角色,练一练。

  (教师注意指导帮助学习有困难的'学生,并要注意发现典型的设计方案。)

  哪位设计师上讲台来,把自己的设计告诉全班同学?

  (三)活动三:通过提问来判断并搭出立体图形

  1.同学们,唐老师还有一个很棒的本领呢!我不看你们搭好的大楼,而且也不用同学们给我指令,只要我动脑筋想一些问题问你们,根据你们的回答,我就会搭出和你们想的相同的大楼,我们试试看吧!高原,请你回答老师的问题:

  你用了几个立方体?从正面看是几个正方形?从上面看是几个正方形?从侧面看是几个正方形?

  你看,老师搭的和你想的一样吗?(教师边问边搭)

  2.请大家想想,老师问了几个问题?哪几个问题?同学们,高原用了4个立方体,为什么从上面、正面、侧面看的结果会不同呢?现在就请大家搭出和高原同学想的相同的房子,你从上面、侧面、正面看看,是不是像大家说的那样。

  3.下面我再请一名同学做设计师,在讲台下面的小凳子上搭一座房子,我们请建筑工人一边提问题,一边搭一搭。

  同桌两个人合作,一个人做设计师,先自己搭出一栋房子,然后建筑工人用尽量少的指令提问设计师,根据他的回答搭出房子来。同桌互换角色练习。(教师注意指导帮助学习有困难的学生。)

  4.谁想知道别人的大楼是怎样搭的?请你上讲台,提问你想知道的同学,我们大家一起搭,看是否能够搭出和他设计的一样的房子。

  (四)活动四:根据指令用长方体、正方体、球搭立体图形

  1.同学们,我们不仅带来了4个正方体,还带来了一些长方体和球,我们可以用这些物体来搭一搭。下面听老师说,大家搭:

  先放三个正方体,正方体的前面放一个球,长方体放在三个正方体的上面。

  2.请同桌两人合作,完成这个活动。

  总结:你今天学到了什么?假如你是老师,你还想和大家说些什么?

  五、教学反思

  记得这学期刚开学的时候,我们拿到教科书就急忙通读了一遍,然后再一起谈感想。我们说得最多的就是这个单元,都认为这节课学生理解掌握起来会有一定的困难,特别是根据指令搭立体图形,大家都说,他们会搭出来吗?但是通过实践发现,我们太小看学生了,他们中的大多数都能很顺利地完成搭立体图形的任务。不过我们也清醒地认识到,能够搭出图形只是初步的要求,要想发展学生的空间观念还需要在日常生活和以后的教学中慢慢培养。

  反思整个教学过程,我觉得基本完成了教学任务,实现了教学目标。教学中充分调动了各种积极因素,创设出了学生乐学的氛围。学生们在学习中,表现出了强烈的参与欲,学得积极主动。整个教学过程体现出了学生是学习的主人,我也获得了实施新课标的一次成功体验。

  稳定性差、注意力很容易分散,是小学生的特点。我们要改变学习方式,使学生积极参与到学习活动中。这节课,学生学习情趣高,个个抢着发言,抢着上台来演示,甚至有的同学一边举手一边都想下位子,看来比较乱,但是他们都是为了学习,这样的“乱”是学生参与学习的表现。新课程给我们带来了许多思考,我们只有不断地探索、不断实践、不断总结,才能不断获得成功的体验。

  六、案例点评

  这节课教师围绕空间观念的培养,组织了四个数学活动,一是左右等方位的摸一摸活动,然后是教科书上提供的两个活动,最后是一个提高的活动。这四个活动环环相扣,层层深入。对于本节课的重点二、三两个活动,教师的设计更是独具匠心,先是由教师演示,再让个别学生演示,然后让大家总结经验,最后让同学们合作操作。这样符合学生的认知规律,有利于学生掌握这节课的知识。

  整节课中,学生通过观察、操作、分析、思考、探索等多种实践活动,学会了从不同的方向观察立体图形,并初步学会了用上、下、左、右、前、后等方位词,描述正方体的相对位置,有效地培养了学生的空间想像能力。

【小学数学六年级教案】相关文章:

小学六年级数学教案11-29

小学数学教案10-19

小学数学优秀教案01-03

小学数学教案07-22

小学数学线与角教案11-23

精选小学数学教案3篇03-08

【精选】小学数学教案4篇02-24

小学数学教案(15篇)12-30

小学数学六年级教案——"圆的周长"教学设计与评析106-08