高中向量教案

时间:2024-11-07 16:39:14 教案 我要投稿
  • 相关推荐

高中向量教案

  在教学工作者实际的教学活动中,总不可避免地需要编写教案,借助教案可以有效提升自己的教学能力。那么什么样的教案才是好的呢?以下是小编整理的高中向量教案,欢迎大家借鉴与参考,希望对大家有所帮助。

高中向量教案

高中向量教案1

  一、学习目标:

  1.经历用向量的方法解决某些简单的几何问题、力学问题的过程,体会向量是某一种数学工具。

  2.发展学生的运算能力和解决实际问题的能力

  二、重点与难点:

  1.利用向量数量积的相关知识解决平面几何、物理学中的垂直、夹角、模长和质点运动等相关问题。

  2.用向量的共线定理解决三点共线、动点的轨迹问题。

  3.提高学生对所学知识和方法的迁移(转化)能力。

  三、基础训练:

  1、已知向量,若点C在函数的图象上,实数的值为

  2、平面向量=(x,y),=(x2,y2),=(1,1),=(2,2),若==1,则这样的向量有

  3、如果向量与的夹角为,那么我们称为向量与的“向量积”,是一个向量,它的长度为,如果,则的.值为

  4.在平行四边形ABCD中,,则=______________

  5.设中,且,判断的形状。

  6、=(cosθ,-sinθ),=(-2-sinθ,-2+cosθ),其中θ∈[0,π2],则||的最大值为

  7、有两个向量,今有动点,从开始沿着与向量相同的方向作匀速直线运动,速度为;另一动点,从开始沿着与向量相同的方向作匀速直线运动,速度为.设、在时刻秒时分别在、处,则当时,秒.

  四、例题研究

  例1.已知向量满足条件,且,求证是正三角形。

  例2、已知,.求证:

  思考:能否画一个几何图形来解释例2

  变题:用向量方法证明梯形中位线定理。

  例3、已知在△ABC中BC,CA,AB的长分别为a,b,c,试用向量方法证明:五、课后作业:

  1.设=(1,3),A、B两点的坐标分别为(1,3)、(2,0),则与的大小关系为

  2.当|a|=|b|≠0且a、b不共线时,a+b与a-b的关系是

  3.下面有五个命题,①单位向量都相等;②长度不等且方向相反的两个向量不一定是共线向量;③若a,b满足|a|>|b|且a与b同向,则a>b;④由于零向量方向不确定,故0不能与任何向量平行;⑤对于任意向量a,b,必有|a+b|≤|a|+|b|。其中正确的命题序号为

  4.已知正方形ABCD的边长为1,=a,=b,=c,则a+b+c的模等于

  5.下面有五个命题,①|a|2=a2;②;③(ab)2=a2b2;④(a-b)2=a2-2ab+b2;⑤若ab=0,则a=0或b=0其中正确命题的序号是

  6.已知m,n是夹角为60°的两个单位向量,则a=2m+n和b=-3m+2n的夹角是

  7.如图,平面内有三个向量,其中的夹角是120°,的夹角为30°,若,则=。

  8.已知△ABC中,A(2,-1),B(3,2),C(-3,-1),BC边上的高为AD,求点D和向量AD的坐标.

  9.设i,j是平面直角坐标系内x轴,y轴正方向上的两个单位向量,且=4i+2j,=3i+4j,证明△ABC是直角三角形,并求它的面积.

  10.已知△ABC顶点的直角坐标分别为A(3,4),B(0,0)C(c,0)

  (1)若c=5,求sinA的值;(2)若A为钝角,求c的取值范围。

  11.已知向量,(1)向量、是否共线?并说明理由;(2)求函数的最大值

  12.在平面直角坐标系中,已知向量又点A(8,0)

  (1)若,且,求向量;

  (2)向量与共线,当,且取最大值4,求

  问题统计与分析

  平面向量应用举例

  2.5平面向量应用举例

高中向量教案2

  一、教材简析

  1、教材的地位和作用:《实数与向量的积》这一章在高中阶段有着很重要的作用。有广泛的实际应用,在整个中学数学里起着承前启后的作用。并且是培养学生数学能力的良好题材。实数与向量的积是向量的重要组成部分,在前面学习了向量的加法和减法,掌握好实数与向量的积这一运算的关键在于明确这一运算的结果仍然是向量,要按大小和方向两个要素去理解及应用。

  向量共线充要条件实际上是由实数与向量的积的定义得到的,利用它常可以解决三点共线和两直线平行等问题。能够在运算时达到运算灵活,方便快捷的目的,故一直受到重视.

  同时,这节课的教学过程对进一步培养学生观察、分析、类比、化归的思想和归纳问题的能力具有重要意义。

  2、教材的处理:结合教参与学生的学习能力,我将《实数与向量的积》安排了2节课。本节课是第一课时。因为在前面学习了向量的加法和减法。为了进一步体现化归思想在高中数学中的运用,我在这节课中也着重体现了化归思想的运用。

  3、教学重点与难点:根据学生现状、及教学要求我确立本节课的教学重点为:理解实数与向量的积的定义及其运用。

  本节课的难点定为:对向量共线的充要条件的理解

  要突破这个难点,关键在于紧扣定义,讲清向量平行与直线平行的区别。

  4、教学目标的分析

  根据教学要求,教材的地位和作用,以及学生现有的知识水平和数学能力,我把本节课的教学目标确定为三个方面:

  (1)知识教学目标:

  使学生在掌握实数与向量的积的定义、运算律的基础上,理解向量共线的充要条件,并能用来解决一些实际问题。

  (2)能力训练目标:

  培养学生运用类比化归的方法去发现并解决问题的`能力。使学生认识到化归思想在数学中的重要性。

  (3)德育渗透目标:

  使学生认识到事物之间的相互联系和辨证统一;增强学生的应用意识;提高学生的数学素质

  二、教法与学法分析

  现代教学论指出:“教学是师生的多边活动,在教师的‘反馈——控制’的同时,每个学生也都在进行着微观的‘反馈——控制’。”由于任何教学都必须通过学生自身的学习建构活动才有成效,故本节课采用“发现式教学法、类比分析法”来组织课堂教学。这堂课用化归的方法运用向量共线的充要条件是一种较好的学法。 在这节课中涉及到了数学中的一种思想方法,即类比思想。数学思想方法是数学的精髓,它蕴含于数学知识发生、发展和应用的过程中,正确地运用数学思想方法,能把数学知识和技能转化为分析问题和解决问题的能力,体现数学学科的特点,形成良好的数学素养。

  我在讲解这部分知识时注意引导学生要充分认识到数学中的类比思想,并引导学生进行类比,充分体会到类比思想的精髓。

  三、教学过程

  第1环节、引入新课:实数与向量的积的定义

  第2环节、知识运用:实数与向量的积的运算律。

  第3环节、升华提高:理解并证明向量共线定理。

  第4环节、性质的运用。我针对向量共线定理设计了两个例题,从正反两个方面体现了定理的实际运用,符合学生的认知过程。在讲解这些例题时着重体现向量共线充要条件的运用。在性质的运用过程中要特别强调向量平行与直线平行的区别。在例题后我还预留了习题时间,用以巩固本节课所学。

  第5环节、小结:

  第6环节、布置作业:

高中向量教案3

  教材分析:

  教科书以物体受力做功为背景,引出向量数量积的概念,功是一个标量,它用力和位移两个向量来定义,反应在数学上就是向量的数量积。

  向量的数量积是过去学习中没有遇到过的一种新的乘法,与数的乘法既有区别又有联系。教科书通过“探究”,要求学生自己利用向量的数量积定义推导有关结论。这些结论可以看成是定义的直接推论。

  教材例一是对数量积含义的直接应用。

  学情分析:

  前面已经学习了向量的概念及向量的线性运算,这里引入一种新的向量运算——向量的数量积,教科书以物体受力做功为背景引入向量数量积的概念,既使向量数量积运算与学生已有知识建立了联系,又使学生看到数量积与向量模的大小有及夹角有关,同时与前面的向量运算不同,其计算结果不是向量而是数量。

  三维目标:

  (一)知识与技能

  1、学生通过物理中“功”等实例,认识理解平面向量数量积的含义及其物理意义,体会平面向量数量积与向量投影的关系。

  2、学生通过平面向量数量积的3个重要性质的探究,体会类比与归纳、对比与辨析等数学方法,正确熟练的应用平面向量数量积的定义、性质进行运算。

  (二)过程与方法

  1、学生经历由实例到抽象到抽象的的数学定义的形成过程,性质的发现过程,进一步感悟数学的本质。

  (三)情感态度价值观

  1、学生通过本课学习体会特殊到一般,一般到特殊的数学研究思想。

  2、通过问题的解决,培养学生观察问题、分析问题和解决问题的实际操作能力;培养学生的交流意识、合作精神;培养学生叙述表达自己解题思路和探索问题的能力。

  四、教学重难点:

  1、重点:平面向量数量积的概念、性质的发现论证;

  2、难点:平面向量数量积、向量投影的理解;

  五、教具准备:多媒体、三角板

  六、课时安排:1课时

  七、教学过程:

  (一)创设问题情景,引出新课

  问题:请同学们回顾一下,我们已经研究了向量的哪些运算?这些运算的结果是什么?

  新课引入:本节课我们来研究学习向量的另外一种运算:平面向量的数量积的物理背景及其含义

  新课:

  1、探究一:数量积的概念

  展示物理背景:视频“力士拉车”,从视频中抽象出下面的物理模型

  背景的'第一次分析:

  问题:真正使汽车前进的力是什么?它的大小是多少?

  答:实际上是力在位移方向上的分力,即,在数学中我们给它一个名字叫投影。

  “投影”的概念:作图

  定义:| |cos(叫做向量在方向上的投影。投影也是一个数量,不是向量;

  2、背景的第二次分析:

  问题:你能用文字语言表述“功的计算公式”吗?

  分析:用文字语言表示即:力对物体所做的功,等于力的大小、位移的大小、力与位移夹角的余弦这三者的乘积;功是一个标量,它由力和位移两个向量来确定。这给我们一种启示,能否把“功”看成是这两个向量的一种运算结果呢?

  平面向量数量积(内积)的定义:已知两个非零向量与,它们的夹角是θ,则数量|

高中向量教案4

  一、总体设想:

  本节课的设计有两条暗线:一是围绕物理中物体做功,引入数量积的概念和几何意义;二是围绕数量积的概念通过变形和限定衍生出新知识――垂直的判断、求夹角和线段长度的公式。教学方案可从三方面加以设计:一是数量积的概念;二是几何意义和运算律;三是两个向量的模与夹角的计算。

  二、教学目标:

  了解向量的数量积的抽象根源。

  了解平面的数量积的概念、向量的夹角

  数量积与向量投影的关系及数量积的'几何意义

  理解掌握向量的数量积的性质和运算律,并能进行相关的判断和计算

  三、重、难点:

  【重点】平面向量数量积的概念和性质

  平面向量数量积的运算律的探究和应用

  【难点】平面向量数量积的应用

  四、课时安排:

  2课时

  五、教学方案及其设计意图:

  平面向量数量积的物理背景

  平面向量的数量积,其源自对受力物体在其运动方向上做功等物理问题的抽象。首先说明放置在水平面上的物体受力F的作用在水平方向上的位移是s,此问题中出现了两个矢量,即数学中所谓的向量,这时物体力F的所做的功为W,这里的(是矢量F和s的夹角,也即是两个向量夹角的定义基础,在定义两个向量的夹角时,要使学生明确“把向量的起点放在同一点上”这一重要条件,并理解向量夹角的范围。这给我们一个启示:功是否是两个向量某种运算的结果呢?以此为基础引出了两非零向量a,b的数量积的概念。

  平面向量数量积(内积)的定义

  已知两个非零向量a与b,它们的夹角是θ,则数量|a

  

高中向量教案5

|cosθ,其中θ是与的夹角。

  规定:零向量与任一向量的数量积为0,即=0

  注意:

  (1)符号“ ”在向量运算中既不能省略,也不能用“×”代替。

  (2)是与的夹角,范围是0≤θ≤π,(再找两向量夹角时,若两向量起点不同,必须通过平移,把起点移到同一点,再找夹角)。

  (3)两个向量的数量积是一个数量,而不是向量。而且这个数量的大小与两个向量的模及其夹角有关。

  (4)两非零向量与的数量积的符号由夹角θ决定:

  cosθ

  = cosθ = 0

  cosθ

  前面我们学习了向量的加法、减法及数乘运算,他们都有明确的几何意义,那么向量的数量积的几何意义是什么呢?

  二、数量积的几何意义

  “投影”的概念:已知两个非零向量与,θ是与的夹角,| |cos(叫做向量在方向上的投影

  思考:投影是向量,还是数量?

  根据投影的定义,投影当然算数量,可能为正,可能为负,还可能为0

  |(为锐角(为钝角(为直角

  | |cos(| |cos(| |cos(=0

  当(为锐角时投影为正值;当(为钝角时投影为负值;当(为直角时投影为0;当(= 0(时投影为| |;当(= 180(时投影为(| |

  思考:在方向上的投影是什么,并作图表示

  数量积的`几何意义:数量积等于的长度| |与在方向上投影| |cos(的乘积,也等于的长度| |与在方向上的投影| |cos(的乘积。

  根据数量积的定义,可以推出一些结论,我们把它们作为数量积的重要性质

  三、数量积的重要性质

  设与都是非零向量,θ是与的夹角

高中向量教案6

  教材分析:

  前面已学习了向量的概念及向量的线性运算,这里引入一种新的向量运算——向量的数量积。教科书以物体受力做功为背景引入向量数量积的概念,既使向量数量积运算与学生已有知识建立了联系,又使学生看到向量数量积与向量模的大小及夹角有关,同时与前面的向量运算不同,其计算结果不是向量而是数量。

  在定义了数量积的概念后,进一步探究了两个向量夹角对数量积符号的影响;然后由投影的概念得出了数量积的几何意义;并由数量积的定义推导出一些数量积的重要性质;最后“探究”研究了运算律。

  教学目标:

  (一)知识与技能

  掌握数量积的定义、重要性质及运算律;

  能应用数量积的重要性质及运算律解决问题;

  了解用平面向量数量积可以解决长度、角度、垂直共线等问题,为下节课灵活运用平面向量数量积解决问题打好基础。

  (二)过程与方法

  以物体受力做功为背景引入向量数量积的概念,从数与形两方面引导学生对向量数量积定义进行探究,通过例题分析,使学生明确向量的数量积与数的乘法的联系与区别。

  (三)情感、态度与价值观

  创设适当的问题情境,从物理学中“功”这个概念引入课题,开始就激发学生的学习兴趣,让学生容易切入课题,培养学生用数学的意识,加强数学与其它学科及生活实践的联系。

  教学重点:

  平面向量的数量积的定义;

  用平面向量的数量积表示向量的模及向量的夹角。

  教学难点:

  平面向量数量积的定义及运算律的.理解和平面向量数量积的应用。

  教学方法:

  启发引导式

  教学过程:

  (一)提出问题,引入新课

  前面我们学习了平面向量的线性运算,包括向量的加法、减法、以及数乘运算,它们的运算结果都是向量,既然两个向量可以进行加法、减法运算,我们自然会提出:两个向量是否能进行“乘法”运算呢?如果能,运算结果又是什么呢?

  这让我们联想到物理中“功”的概念,即如果一个物体在力F的作用下产生位移s,F与s的夹角是θ,那么力F所做的功如何计算呢?

  我们知道:W=|F

高中向量教案7

  一、教学内容分析

  1、教学主要内容

  (1)平面向量数量积及其几何意义

  (2)用平面向量处理有关长度、角度、直垂问题

  2、教材编写特点

  本节是必修4第二章第3节的内容,在教材中起到层上启下的作用。

  3、教学内容的核心教学思想

  用数量积求夹角,距离及平面向量数量积的坐标运算,渗透化归思想以及数形结合思想。

  4、我的思考

  本节数学的目标为让学生掌握平面向量数量积的定义,及应用平面向量数量积的定义处理相关夹角距离及垂直的问题。因此,让学生们学会把数学问题转化到图形中,及能在图形中把图形转化成相关的数学问题尤其重要。

  二、学生分析

  1、在学平面向量的数量积之前,学习已经认识并会找向量的夹角,及用坐标表示向量的知识。因此,对于a·b=∣b∣︳a︴cosθ(θ=),容易进行相应的简单计算,但对于理解这个式子上存在一定的问题,因此,需把a·b=∣a∣∣b∣ cosθ转化到图形

  a·b=∣OM∣·∣OB∣=∣b∣cosθ∣a∣

  即a·b=∣a∣∣b∣cosθ理解并记忆。

  对于cosθ=,等的变形应用,同学们甚感兴趣。

  2、我的思考

  对于基础薄弱的学生而言,学习本节知识,在处理例题成练习上,计算量不易过大。

  三、学习目标

  1、知识与技能

  (1)掌握平面向量数量积及其几何意义。

  (2)平面向量数量积的应用。

  2、过程与方法

  通过学生小组探究学习,讨论并得出结论。

  3、情感态度与价值观

  培养学生运算推理的能力。

  四、教学活动

  内容师生互动设计意图时间

  1、课题引入师:请同学请回忆我们所学过的`相关同里的运算。

  生:加法、减法,数乘

  师:这些运算所得的结果是数还是向量。

  生:向量。

  师:今天我们来学习一种有关向量的新的运输,数里积(板书课题)由旧知引出新知,让学生知道我们学习是层层深入,知识永不止境,从而把学生引入到新的课程学习中来。 3min 2、平面向里的数量积定义师:平面向星数量积(内积或点积)的定义:

  已知两个非零向星a·b,它们的夹角是θ,则数量∣a∣·∣b∣cosθ叫a与b的数量积,记作a·b,即a·b=∣a∣∣b∣cosθ,注:①a·b≠a×b≠ab

  ②O与任何向量的数里积为O。直接给出定义,可以让学习对新知识的求知数得到满足,并对新知识的探究有一个方向性。 5min 3、几何意义师:同学们猜想

  a·b=∣a∣∣b∣cosQ

  用图怎么表示

  生:a·b=∣a∣·∣b∣cosθ

  =∣OM∣·∣OB∣

  师:数里积a·b等于a的长度与b在a方向上的投影∣b∣cosθ的面积。

  师:请同学们讨论数量积且有哪些性质

  通过自己画图培养学生把问题转化到图形上,到图形上解决问题的能力。

  5min性质师:同学们a·b为非零向果,a·b=∣a∣·∣b∣cosθ。当θ=0°,90°,180°时,a·b有什么性质呢。

  生:①当θ=90°时

  a·b= a·b=∣a∣·∣b∣cosθ

  ②当a与b同向时

  即θ= 0°,则a·b=∣ a∣·∣b∣

  当a与b反向时,

  即θ= 180°,则a·b=∣ a∣·∣b∣

  特别a·a=∣ a∣2成∣ a∣= a·a

  ③∣a∣·∣b∣≤∣ a∣ ∣b∣

  学生自己的探究性质,体会并深入理解向里数量的运算性质。 8min生:①a·b= b·a(交换)

  ②(λa)·b=λ(a·b)

【高中向量教案】相关文章:

高中舞蹈教案05-26

高中音乐教案04-30

高中情绪教案12-19

高中光的折射教案01-07

高中政治教案11-21

高中化学教学教案10-17

高中音乐鉴赏教案02-24

高中化学教案12-30

高中化学课堂教案02-22