高二数学的教学计划

时间:2022-12-24 16:41:36 教学计划 我要投稿

高二数学的教学计划15篇

  日子在弹指一挥间就毫无声息的流逝,我们又将接触新的知识,学习新的技能,积累新的经验,是时候认真思考计划该如何写了。拟起计划来就毫无头绪?以下是小编精心整理的高二数学的教学计划,欢迎阅读与收藏。

高二数学的教学计划15篇

高二数学的教学计划1

  一、指导思想和要求

  贯彻教育部的有关教育教学计划,在高一级部的直接领导下,严格执行学校的各项教育教学制度和要求,认真完成各项任务。教学的宗旨是使学生在获得作为一个现代公民所必须的基本数学知识和技能的同时,在情感、态度、价值观和一般能力等方面都能获得充分的发展,为学生的终身学习、终身受益奠定良好的基础。为高考做准备,为学生打下坚实的基础,是我们教学目标。

  二、主要工作

  1、认真学习新课标,转变教师的教学理念加强教师学习教育教学的理论学习。以学习新课标为主要的学习内容,组织切实有效的学习讨论活动,用先进的教育理念支撑深化教育改革,改变传统的教学模式。要求教师们把新课标的理念渗透到教学中,教学注重以培养学生的合作交流意识

  2、转变教师的教学方式转变学生的学习方式教师要以新理念指导自己的教学工作,牢固树立学生是学习的主人,以平等、宽容的态度对待学生,在沟通和“对话”中实现师生的共同发展,努力建立互动的师生关系。本学期要继续以改变学生的学习方式为主,提倡研究性学习、发现性学习、参与性学习、体验性学习和实践性学习,以实现学生学习方式多样化地转变,促进学生知识与技能,情感、态度与价值观的整体发展,为学生的终身学习打下坚实的基础。

  3、发挥备课组的集体作用集体备课,教案基本统一。每一节课都有一个主备,然后集体讨论,补充完善。同时,根据各班的具体情况,适当进行调整,以适应学生的实际情况为标准,让学生学会并且掌握,不搞教条主义和形式主义。教案应体现知识体系、思维方法、训练应用,以及渗透运用等,要有对重点难点的分析和解决方法。备课组要做到资源共享,反对搞单干。作业在完成课本上的练习和习题的基础上,根据不同层次的学生,要求做统一所订资料中的'不同题目。

  4、配合“周考和月考制度”做好周考和月考的制卷和阅卷工作按照高一级部的制度,每周日晚自习要进行考试,主要考试学科是:语文、数学、外语,每三周左右时间数学考试一次。要求本组数学老师积极做好制卷和批改任务,具体工作另行安排。同时,每月要大考一次,要求本组老师积极做好制卷和阅卷工作。

  三、一些固定工作安排

  1、每周的星期三的下午第三节课为固定的备课组活动时间,每次活动都有一个主题,都有一个中心发言人,都有文字记录。

  2、每位教师要多听同科组的课,并诚恳的提出自己的意见。

  3、每位教师每周做好下周集体教案的撰写和修改工作。

  4、每三周一次的数学周考的制卷和批改工作。(具体计划另行制定)

  5、每月一次的数学月考的制卷和批改工作。

  一、教学思想:

  教育学生掌握基础知识与基本技能,培养学生的逻辑思维能力、运算能力、空间观念和解决简单实际问题的能力,使学生逐步学会正确、合理地进行运算,逐步学会观察分析、综合、抽象、概括。会用归纳演绎、类比进行简单的推理。使学生懂得数学来源于实践又反过来作用于实践。提高学习数学的兴趣,逐步培养学生具有良好的学习习惯,实事求是的态度。顽强的学习毅力和独立思考、探索的新思想。培养学生应用数学知识解决问题的能力。

  同时针对初三学生的特点,以中考、全国数学竞赛为出发点,教学上打算在全面抓好“双基”的同时,拔出一部分尖子起领头作用,对有学习积极性而基础一般或较差的学生给予大力的帮助,提高他们的学习成绩,对躺倒不学的人首先做好他们的思想工作,在采用较低难度的作业和要求逐步培养他们的学习兴趣,从而提高他们的学习成绩。

  二、在教学过程中抓住以下几个环节

  (1)认真备课。认真研究教材及考纲,明确教学目标,抓住重点、难点,精心设计教学过程,重视每一章节内容与前后知识的联系及其地位,重视课后反思,设计好每一节课的师生互动的细节。

  (2)抓住课堂40分钟,提高课堂效率。学期的教学内容共四章,按照教学计划,备课统一进度,统一练习,进行教学,精心设计每一节课的每一个环节,争取每节课达到教学目标,突出重点,分散难点,增大课堂容量组织学生人人参与课堂活动,使每个学生积极主动参与课堂活动,使每个学生动手、动口、动脑,及时反馈信息提高课堂效益。

  (3)课后反馈。精选适当的练习题、测试卷,及时批改作业,发现问题及时给学生面对面的指出并指导学生搞懂弄通,不留一个疑难点,让学生学有所获。

  三、断钻研业务,提高业务能力及水平。

  积极参加业务学习,看书、看报,参加学校组织的培训,使之更好的为基础教育的改革努力,掌握新的技能、技巧,不断努力,取长补短,扬长避短,努力使教学更务实,方法更灵活,手段更先进。积极攒写论文,案例,反思,主动参与课题研究。

  6、初三年级数学备课组教学计划数学计划

  一、授课教师:

  二、指导思想:

  1、深入推进和贯彻“二期课改”的精神,以新的教育思想和课程理念实施,以学生发展为本,以培养学生创新精神和实践能力为重点的素质教育,探索有效教学的新模式。

  2、针对近年来中考命题的变化和趋势进行研究,收集试卷,精选习题,建立题库,努力把握中考方向,积极探索高效复习途径,力求达到减负加压增效。

  三、教学目标:

  1、态度与价值观:

  通过学习交流、合作、讨论的方式,积极探索,改进学生的学习方式,提高学习质量,逐步形成正确地数学价值观。

  2、知识与技能:

  掌握到一元二次方程解应用题,掌握可化为一元二次方程、一元二次方程的有关方程的方法,掌握相似形的性质、判定。掌握锐角的三角比及解直角三角形的方法。

  3、过程与方法:

  [1]经历“观察——探索——猜测——证明”的学习过程,体验科学发现的一般规律。

  [2]通过探索、学习,使学生逐步学会正确、合理地进行运算,逐步学会观察、分析、综合、抽象,会用归纳、演绎、类比进行简单地推理。

  四、学习时间及内容安排:

  9月~10月:

  一元二次方程的应用。

  11月~12月:

  相似形。

  20xx年1月:

  期终考试。

  五、学习资料:

  《一课一练》、《周周练》。

  六、考试备忘录:

  10月下旬期中考试,1月上旬期终考试。

高二数学的教学计划2

  一、学情分析

  高二某班共有学生73人, 8班共有学生70人。两个班级都是高二理科班的三类班,大部分学生基础不扎实,学习兴趣不高,甚至很多学生存在怕数学科的心理。但他们还是存在一颗想学好数学的心,也想融入变化多端的数学世界,更想在每次考试中独领风骚,鉴于此,对他们正确引导,教学中适当调整难度,起点放低点,步子迈小点,还是会有好成绩的。

  二、教学计划

  1、加强自身学习。

  ①加强课本的研读。教科书是一切教学的出发点,同时也是考试的归属地,任何一个数学知识点都会从教科书中找到类型题或者相似题或者其影子。对教科书能否吃透,专研到位,直接决定着教学知识的全面性和系统性。也就决定着研读教材的必要性。

  ②他山之石,可以攻玉。一个人由于生活的环境,面对的'对象,自身知识局限等多方面原因,视野和出发点都有局限,思考问题和解决问题的广度和深度都有局限,因此,多阅读教学参考类的书,吸取他人的经验,借鉴他人所长弥补自己所短,对于增强教学的针对性和精彩性大有裨益。

  ③强化课改意识。新课改已经全面铺开,新课改的精神和思想都独具时代性,前瞻性,科学性,因此,加强新课改知识的学习,领悟新课改思想,增强新课改意识,是时代的需要,是发展的需要。因此,积极参与新课改培训,领会新课改精髓,并应用于实践中是当前必须要做的,只有这样,才能使自己的知识新陈代谢。

  ④认真参与组内备课。珍惜每周一次的集体备课,充分利用好这次集体备课机会,从同行们那里学习到自己缺乏或者不擅长的东西,并积极实施好组内的各项安排,落实好课时要求。

  ⑤增强听课意识。按照学校的要求,积极参加新课改年级的课堂听课活动,听取授课教师的点评,发现亮点,记录亮点,积累亮点,点亮亮点。

  2、抓好课堂教学主战场,激发师生学习数学热情。

  ①加强新课情景创设,激发学生学习热情。每一节新课的开展,都有其现实意义,有其价值所在,有其趣味性,充分挖掘好这方面知识,可起到一个良好的开端作用。

  ②精选精讲例题。对于学生自己学得会的,不讲,对于学生讨论后可以解决的,给以适当点拨,对于学生在教师引导下完成的,要慢慢讲,细细的讲,争取每个学生都听得进,听得懂,学得会。对于超越学生承受能力的,一概不讲。

  ③精心布置课后作业。课后作业是课堂教学的反馈,作业质量的高低,一定层面可以反映教学效果的高低,因此,作业的布置需要科学化,分层化,多样化,且知识点具有全面性。

  3、做好课后辅导工作。

  ①利用晚自习,充分给以每个学生耐心、细心、全面的辅导。让学生积累的问题得到彻底解决。

  ②利用自习课时间,寻找需要帮助的学生进行辅导,公式背不出来的,抓背公式,不交作业的,责令补交作业。

  4、做好作业、考试反馈工作。

  学生认真完成作业和考卷,教师进行批改,总结共性问题,发现个性问题,有针对性的给以反馈,及时消除困惑。

  5、规范作答,养成良好习惯。

  现在学生的数学答卷,条理不清晰,逻辑混乱,因果颠倒,这是基础不扎实的表现,更是一种思维的缺陷。因此,现阶段抓好规范答题,有助于学生良好数学思维的养成,避免将来高考失分和日后生活的凌乱。

  6、提高学生的数学兴趣,普及数学价值规律的应用。

  兴趣是最好的教师。数学难,数学烦,难在何处,烦在何方?找到原因,对症下药,通过课堂,移植中外数学趣味知识,让学生体会到数学的价值所在,通过多媒体,降低数学思维难度等等都是提高学生兴趣的好方法。

  以上是这个学期的教学工作计划,在实施过程中,将及时作出调整,以期达到教与学的最佳效果。

高二数学的教学计划3

  一、指导思想

  1、获得必要的基本知识和技能,反复复习前面所学知识,加深印象。通过不同形式的自主学习,探究活动,培养学生对数学的兴趣。

  2、发展数学应用意识,学会将数学知识运用于生活。

  3、树立学生能学好数学的信心。

  二、基本情况分析

  本学期学的内容是拓展模块的数学知识,主要包括三角函数、二次曲线、概率与统计的相关知识点,与基础模块、职业模块相比,知识变的有一定的难度,并且更系统化,教学中估计困难不少,数学基础的`差异程度加大,为教学的因材施教增加了难度。

  我校的生源对象一般都是中考落榜生。学习上的挫折使他们失去了学习的信心和进取心。为了求职的需要,有部分学生自愿选择进入中职学校学习,但有相当一部分学生是迫于外界某种压力,如父母的强烈要求等,而不得不进入职业学校学习的;还有一些学生初中都没有念完,是家长为避免其子女在社会上出乱子,把孩子送到学校,学习知识则放在次要的位置。由于学生入学时,初中阶段的文化基础差,年龄小,对专业知识生疏,因此,接受能力、分析能力、思维能力偏低,综合素质普遍不高,学习能力差异较大等,给学校的教育管理和组织教学带来了很大的困难。

  学生自身数学基础薄弱,基本概念模糊不清,基本方法掌握不扎实,知识积累量不够多,遗忘速度快,对问题的分析能力差,在上课时要尽可能的放慢讲课速度,反复及时督促学生复习已学知识和预习新知识,多练习,以加深印象。

  三、教学目标

  理解所学知识的概念,能够通过数学语言描述,掌握新知识的灵活应用,熟练新知识的性质特征的实际应用。

  着眼于数学教学的实际,通过“低起点、巧衔接”,力求实现学生乐于学,遵循学生认知发展的规律,降低知识的起点,由已知到未知,由浅入深,由具体到抽象。

  四、方法措施

  1、选取贴近学生生活的数学实例引导新知识,使学生产生生活中处处存在数学,以达到培养数学兴趣的目的。

  2、通过实堂演练,引发学生的思考和探索,培养自主学习,形成逻辑思维习惯

  五、课程安排及教学进度

  余弦

  周活动安排

  周次

  时间

  活动安排

  备注

  1

  2.28-3.6

  两角和与差的正弦公式

  2

  3.7-3.13

  两角和与差的余弦公式

  3

  3.14-3.20

  正弦型函数

  4

  3.21-3.27

  正弦定理,

  5

  3.28-4.3

  余弦定理

  6

  4.4-4.10

  三角公式及应用复习

  7

  4.11-4.17

  椭圆

  8

  4.18-4.24

  双曲线

  9

  4.25-5.1

  期中考试

  10

  5.2-5.8

  抛物线

  11

  5.9-5.15

  二次曲线及应用复习

  12

  5.16-5.22

  概率与统计

  13

  5.23-5.29

  排列与组合

  14

  5.30-6.5

  二项式定理

  15

  6.6-6.12

  离散型随机变量及其分布

  16

  6.13-6.19

  二项分布,正态分布

  17

  6.20-6.26

  本章复习

  18

  6.27-7.3

  期末考试

  19

  7.4-7.10

  总结

高二数学的教学计划4

  一、指导思想

  在学校、数学组的领导下,严格执行学校的各项教育教学制度和要求,认真完成各项任务,严格执行“三规”、“五严”。利用有限的时间,使学生在获得所必须的基本数学知识和技能的同时,在数学能力方面能有所提高,为学生今后的发展打下坚实的数学基础。

  二、教学措施

  1、以能力为中心,以基础为依托,调整学生的学习习惯,调动学生学习的积极性,让学生多动手、多动脑,培养学生的运算能力、逻辑思维能力、运用数学思想方法分析问题解决问题的能力。精讲多练,一般地,每一节课让学生练习20分钟左右,充分发挥学生的主体作用。

  2、坚持每一个教学内容集体研究,充分发挥备课组集体的力量,精心备好每一节课,努力提高上课效率。调整教学方法,采用新的教学模式。

  3、脚踏实地做好落实工作。当日内容,当日消化,加强每天、每月过关练习的检查与落实。坚持每周一周练,每章一章考。通过周练重点突破一些重点、难点,章考试一章的查漏补缺,章考后对一章的不足之处进行重点讲评。

  4、周练与章考,切实把握试题的选取,切实把握高考的脉搏,注重基础知识的考查,注重能力的考查,注意思维的层次性(即解法的多样性),适时推出一些新题,加强应用题考察的.力度。每一次考试试题坚持集体研究,努力提高考试的效率。

  5.注重对所选例题和练习题的把握:

  6.周密计划合理安排,现数学学科特点,注重知识能力的提高,提升综合解题能力,加强解题教学,使学生在解题探究中提高能力.

  7.多从“贴近教材、贴近学生、贴近实际”角度,选择典型的数学联系生活、生产、环境和科技方面的问题,对学生进行有计划、针对性强的训练,多给学生锻炼各种能力的机会,从而达到提升学生数学综合能力之目的不脱离基础知识来讲学生的能力,基础扎实的学生不一定能力强.教学中不断地将基础知识运用于数学问题的解决中,努力提高学生的学科综合能力.

  三、对自己的要求——落实教学的各个环节

  1.精心上好每一节课

  备课时从实际出发,精心设计每一节课,备课组分工合作,利用集体智慧制作课件,充分应用现代化教育手段为教学服务,提高四十五分钟课堂效率。

  2.严格控制测验,精心制作每一份复习资料和练习

  教学中配备资料应要求学生按教学进度完成相应的习题,老师要给予检查和必要的讲评,老师要提前向学生指出不做的题,以免影响学生的学习。三类练习(大练习、限时训练、月考)试题的制作分工落实到每个人(备课组长出月考卷,其他教师出大练习、限时训练卷),并经组长严格把关方可使用.注重考试质量和试卷分析,定期组织备课组教师进行学情分析,发现问题,寻找对策,及时解决,确保学生的学习积极性不断提高。

  3.做好作业批改和加强辅导工作

高二数学的教学计划5

  教学目标:

  1. 知识与技能目标:

  (1)了解中国古代数学中求两个正整数最大公约数的算法以及割圆术的算法;

  (2)通过对“更相减损之术”及“割圆术”的学习,更好的理解将要解决的问题“算法化”

  的思维方法,并注意理解推导“割圆术”的操作步骤。

  2. 过程与方法目标:

  (1)改变解决问题的思路,要将抽象的数学思维转变为具体的步骤化的思维方法,提高逻

  辑思维能力;

  (2)学会借助实例分析,探究数学问题。

  3. 情感与价值目标:

  (1)通过学生的主动参与,师生,生生的合作交流,提高学生兴趣,激发其求知欲,培养探索精神;

  (2)体会中国古代数学对世界数学发展的贡献,增强爱国主义情怀。

  教学重点与难点:

  重点:了解“更相减损之术”及“割圆术”的算法。

  难点:体会算法案例中蕴含的算法思想,利用它解决具体问题。

  教学方法:

  通过典型实例,使学生经历算法设计的全过程,在解决具体问题的过程中学习一些基本逻辑

  结构,学会有条理地思考问题、表达算法,并能将解决问题的过程整理成程序框图。

  教学过程:

  教学

  环节 教学内容 师生互动 设计意图

  创设 情境

  引入新课 引导学生回顾

  人们在长期的生活,生产和劳动过程中,创造了整数,分数,小数,正负数及其计算,以及无限逼近任一实数的方法,在代数学,几何学方面,我国在宋,元之前也都处于世界的前列。我们在小学,中学学到的算术,代数,从记数到多元一次联立方程的求根方法,都是我国古代数学家最先创造的。更为重要的是我国古代数学的发展有着自己鲜明的特色,也就是“寓理于算”,即把解决的问题“算法化”。本章的内容是算法,特别是在中国古代也有着很多算法案例,我们来看一下并且进一步体会“算法”的概念。

  教师引导,学生回顾。

  教师启发学生回忆小学初中时所学算术代数知识,共同创设情景,引入新课。

  通过对以往所学数学知识的回顾,使学生理清知识脉络,并且向学生指明,我国古代数学的发展“寓理于算”,不同于西方数学,在今天看仍然有很大的优越性,体会中国古代数学对世界数学发展的贡献,增强爱国主义情怀。

  阅读课本 探究新知

  1. 求两个正整数最大公约数的算法

  学生通常会用辗转相除法求两个正整数的最大公约数:

  例1:求78和36的最大公约数

  (1) 利用辗转相除法

  步骤:

  计算出78 36的余数6,再将前面的除数36作为新的被除数,36 6=6,余数为0,则此时的除数即为78和36的最大公约数。

  理论依据: ,得 与 有相同的公约数

  (2) 更相减损之术

  指导阅读课本P ----P ,总结步骤

  步骤:

  以两数中较大的数减去较小的数,即78-36=42;以差数42和较小的数36构成新的一对数,对这一对数再用大数减去小数,即42-36=6,再以差数6和较小的数36构成新的一对数,对这一对数再用大数减去小数,即36-6=30,继续这一过程,直到产生一对相等的数,这个数就是最大公约数

  即,理论依据:由 ,得 与 有相同的.公约数

  算法: 输入两个正数 ;

  如果 ,则执行 ,否则转到 ;

  将 的值赋予 ;

  若 ,则把 赋予 ,把 赋予 ,否则把 赋予 ,重新执行 ;

  输出最大公约数

  程序:

  a=input(“a=”)

  b=input(“b=”)

  while a<>b

  if a>=b

  a=a-b;

  else

  b=b-a

  end

  end

  print(%io(2),a,b)

  学生阅读课本内容,分析研究,独立的解决问题。

  教师巡视,加强对学生的个别指导。

  由学生回答求最大公约数的两种方法,简要说明其步骤,并能说出其理论依据。

  由学生写出更相减损法和辗转相除法的算法,并编出简单程序。

  教师将两种算法同时显示在屏幕上,以方便学生对比。

  教师将程序显示于屏幕上,使学生加以了解。 数学教学要有学生根据自己的经验,用自己的思维方式把要学的知识重新创造出来。这种再创造积累和发展到一定程度,就有可能发生质的飞跃。在教学中应创造自主探索与合作交流的学习环境,让学生有充分的时间和空间去观察,分析,动手实践,从而主动发现和创造所学的数学知识。

  求两个正整数的最大公约数是本节课的一个重点,用学生非常熟悉的问题为载体来讲解算法的有关知识,,强调了提供典型实例,使学生经历算法设计的全过程,在解决具体问题的过程中学习一些基本逻辑结构,学会有条理地思考问题、表达算法,并能将解决问题的过程整理成程序框图。为了能在计算机上实现,还适当展示了将自然语言或程序框图翻译成计算机语言的内容。总的来说,不追求形式上的严谨,通过案例引导学生理解相应内容所反映的数学思想与数学方法。

高二数学的教学计划6

  本人这个学期担任高二(9)(10)班的数学科的教学工作,两班人数为132名学生,是理科普通班,学生基础比较薄弱,学习态度一般,个别比较积极。

  一、指导思想:

  使学生在九年义务教育数学课程的基础上,进一步提高作为未来公民所必要的数学素养,以满足个人发展与社会进步的需要。具体目标如下。

  1.获得必要的数学基础知识和基本技能,理解基本的数学概念、数学结论的本质,了解概念、结论等产生的背景、应用,体会其中所蕴涵的数学思想和方法,以及它们在后续学习中的作用。通过不同形式的自主学习、探究活动,体验数学发现和创造的历程。

  2.提高空间想像、抽象概括、推理论证、运算求解、数据处理等基本能力。

  3.提高数学地提出、分析和解决问题(包括简单的实际问题)的能力,数学表达和交流的能力,发展独立获取数学知识的能力。

  4.发展数学应用意识和创新意识,力求对现实世界中蕴涵的一些数学模式进行思考和作出判断。

  5.提高学习数学的兴趣,树立学好数学的信心,形成锲而不舍的钻研精神和科学态度。

  6.具有一定的数学视野,逐步认识数学的科学价值、应用价值和文化价值,形成批判性的思维习惯,崇尚数学的理性精神,体会数学的美学意义,从而进一步树立辩证唯物主义和历史唯物主义世界观。

  二、 教材特点:

  我们所使用的教材是人教版《普通高中课程标准实验教科书数学(A版)》,它在坚持我国数学教育优良传统的前提下,认真处理继承,借签,发展,创新之间的关系,体现基础性,时代性,典型性和可接受性等到,具有如下特点:

  1.亲和力:以生动活泼的呈现方式,激发兴趣和美感,引发学习激情。

  2.问题性:以恰时恰点的问题引导数学活动,培养问题意识,孕育创新精神。

  3.科学性与思想性:通过不同数学内容的联系与启发,强调类比,推广,特殊化,化归等思想方法的运用,学习数学地思考问题的方式,提高数学思维能力,培育理性精神。

  4.时代性与应用性:以具有时代性和现实感的素材创设情境,加强数学活动,发展应用意识。

  三.提高教学质量的主要措施:

  1、认真钻研教材和新课程标准。

  2、认真备课,精心设计教案。

  3、转变传统的教育教学观念,优化教学方法。

  4、采取直观教学,注意理论联系实际。

  四、 教法分析:

  1.选取与内容密切相关的,典型的,丰富的和学生熟悉的素材,用生动活泼的语言,创设能够体现数学的概念和结论,数学的思想和方法,以及数学应用的学习情境,使学生产生对数学的亲切感,引发学生看个究竟的冲动,以达到培养其兴趣的目的。

  2.通过观察,思考,探究等栏目,引发学生的思考和探索活动,切实改进学生的学习方式。

  3.在教学中强调类比,推广,特殊化,化归等数学思想方法,尽可能养成其逻辑思维的习惯。

  五、教学要求:

  1、了解合情推理的含义,能利用归纳和类比等进行简单的推理,了解合情推理在数学发现中的作用;了解演绎推理的重要性,掌握演绎推理的基本模式,并能运用它们进行一些简单推理;了解合情推理和演绎推理之间的联系和差异。

  2、了解直接证明的两种基本方法:分析法和综合法;了解分析法和综合法的思考过程、特点;了解间接证明的一种基本方法──反证法;了解反证法的思考过程、特点。

  3、(理)了解数学归纳法的原理,能用数学归纳法证明一些简单的数学命题。

  4、理解复数相等的充要条件;了解复数的代数表示法及其几何意义;会进行复数代数形式的四则运算;了解复数代数形式的`加、减运算的几何意义。

  5、(理)理解分类加法计数原理和分类乘法计数原理;会用分类加法计数原理或分步乘法计数原理分析和解决一些简单的实际问题;理解排列、组合的概念;能利用计数原理推导排列数公式、组合数公式,能解决简单的实际问题;能用计数原理证明二项式定理,会用二项式定理解决与二项展开式有关的简单问题。

  6、(理)理解取有限个值的离散型随机变量及其分布列的概念,了解分布列对于刻画随机现象的重要性;理解超几何分布及其导出过程,并能进行简单的应用;了解条件概率和两个事件相互独立的概念,理解n次独立重复试验的模型及二项分布,并能解决一些简单的实际问题;理解取有限个值的离散型随机变量均值、方差的概念,能计算简单离散型随机变量的均值、方差,并能解决一些实际问题;利用实际问题的直方图,了解正态分布曲线的特点及曲线所表示的意义。

  7、了解下列一些常见的统计方法,并能应用这些方法解决一些实际问题:了解独立性检验(只要求22列联表)的基本思想、方法及其简单应用;了解假设检验的基本思想、方法及其简单应用;了解聚类分析的基本思想、方法及其简单应用;了解回归的基本思想、方法及其简单应用。

  9、了解程序框图;了解工序流程图(即统筹图);能绘制简单实际问题的流程图,了解流程图在解决实际问题中的作用;了解结构图;会运用结构图梳理已学过的知识、整理收集到的资料信息。

  8、所有考生都学习选修4-4 坐标系与参数方程,理科考生还需学习选修4-5不等式选讲这部分专题内容。

  六、教学措施:

  1、激发学生的学习兴趣。由数学活动、故事、吸引人的课、合理的要求、师生谈话等途径树立学生的学习信心,提高学习兴趣,在主观作用下上升和进步。

  2、注意从实例出发,从感性提高到理性;注意运用对比的方法,反复比较相近的概念;注意结合直观图形,说明抽象的知识;注意从已有的知识出发,启发学生思考。

  3、加强培养学生的逻辑思维能力就解决实际问题的能力,以及培养提高学生的自学能力,养成善于分析问题的习惯,进行辨证唯物主义教育。

  4、抓住公式的推导和内在联系;加强复习检查工作;抓住典型例题的分析,讲清解题的关键和基本方法,注重提高学生分析问题的能力。

  5、自始至终贯彻教学四环节,针对不同的教材内容选择不同教法。

  6、重视数学应用意识及应用能力的培养。

  七、提高自身素质的主要措施

  1、认真学习专业知识,不断获取新知识、新信息,多进行总结与反思。

  2、积极参加教研课改活动,多听同行老师的课,经常和经验丰富的老师交流心得。

高二数学的教学计划7

  【课程分析】:

  在前面的两节里,我们已经学习了一些简单的算法,对算法已经有了一个初步的了解。这节课的内容是继续加深对算法的认识,体会算法的思想。这节课所学习的辗转相除法与更相减损术是第三节我们所要学习的四种算法案例里的第一种。学生们通过本节课对中国古代数学中的算法案例——辗转相除法与更相减损术学习,体会中国古代数学对世界数学发展的贡献。教学重点是理解辗转相除法与更相减损术求最大公约数的方法。难点是把辗转相除法与更相减损术的方法转换成程序框图与程序语言。

  【学情分析】:

  在理解最大公约数的基础上去发现辗转相除法与更相减损术中的数学规律,并能模仿已经学过的程序框图与算法语句设计出辗转相除法与更相减损术的程序框图与算法程序。

  【设计思路】

  采用启发式,并遵循循序渐进的教学原则。这有利于学生掌握从现象到本质,从已知到未知逐步形成念的学习方法,有利于发展学生抽象思维能力和逻辑推理能力。

  【学习目标】

  (1)理解辗转相除法与更相减损术中蕴含的数学原理,并能根据这些原理进行算法分析。

  (2)基本能根据算法语句与程序框图的知识设计完整的程序框图并写出算法程序。

  (3)领会数学算法与计算机处理的结合方式,初步掌握把数学算法转化成计算机语言的一般步骤。

  【教学流程】

  一、创设情景,揭示课题

  1、教师首先提出问题:在初中,我们已经学过求最大公约数的知识,你能求出18与30的公约数吗?

  2、接着教师进一步提出问题,我们都是利用找公约数的方法来求最大公约数,如果公约数比较大而且根据我们的`观察又不能得到一些公约数,我们又应该怎样求它们的最大公约数?比如求8251与6105的最大公约数?这就是我们这一堂课所要探讨的内容。

  二、研探新知,发现规律

  1、辗转相除法

  例1求两个正数8251和6105的最大公约数。

  解:8251=6105×1+2146

  显然8251的最大公约数也必是2146的约数,同样6105与2146的公约数也必是8251的约数,所以8251与6105的最大公约数也是6105与2146的最大公约数。

  6105=2146×2+1813 2146=1813×1+333

  1813=333×5+148 333=148×2+37

  148=37×4+0

  则37为8251与6105的"最大公约数。

  以上我们求最大公约数的方法就是辗转相除法。也叫欧几里德算法,它是由欧几里德在公元前300年左右首先提出的。利用辗转相除法求最大公约数的步骤如下:

  第一步:用较大的数m除以较小的数n得到一个商q0和一个余数r0;

  第二步:若r0=0,则n为m,n的最大公约数;若r0≠0,则用除数n除以余数r0得到一个商q1和一个余数r1;

  第三步:若r1=0,则r1为m,n的最大公约数;若r1≠0,则用除数r0除以余数r1得到一个商q2和一个余数r2;

  依次计算直至rn=0,此时所得到的rn-1即为所求的最大公约数。

  (1)辗转相除法的程序框图及程序

  程序框图:(略)

  程序:(当循环结构)直到型结构见书37面。

  INPUT “m=”;m

  INPUT “n=”;n

  IF m

  m=n

  n=x

  END IF

  r=m MOD n

  WHILE r<>0

  r=m MOD n

  m=n

  n=r

  WEND

  PRINT m

  END

  练习:利用辗转相除法求两数4081与20723的最大公约数(答案:53)

  2、更相减损术

  我国早期也有解决求最大公约数问题的算法,就是更相减损术。

  更相减损术求最大公约数的步骤如下:可半者半之,不可半者,副置分母·子之数,以少减多,更相减损,求其等也,以等数约之。

  翻译出来为:

  第一步:任意给出两个正数;判断它们是否都是偶数。若是,用2约简;若不是,执行第二步。第二步:以较大的数减去较小的数,接着把较小的数与所得的差比较,并以大数减小数。继续这个操作,直到所得的数相等为止,则这个数(等数)就是所求的最大公约数。

  例2用更相减损术求98与63的最大公约数、

  解:由于63不是偶数,把98和63以大数减小数,并辗转相减,即:98-63=35

  63-35=28

  35-28=7

  28-7=21

  21-7=14

  14-7=7

  所以,98与63的最大公约数是7。

  练习:用更相减损术求两个正数84与72的最大公约数。(答案:12)

  三、对比归纳,得出结论

  3、比较辗转相除法与更相减损术的区别

  (1)都是求最大公约数的方法,计算上辗转相除法以除法为主,更相减损术以减法为主,计算次数上辗转相除法计算次数相对较少,特别当两个数字大小区别较大时计算次数的区别较明显。

  (2)从结果体现形式来看,辗转相除法体现结果是以相除余数为0则得到,而更相减损术则以减数与差相等而得到

高二数学的教学计划8

  一、教材分析。

  1、教材地位、作用。

  本节课的内容选自《普通高中课程标准实验教科书数学必修3(A)版》第三章中的第3.2.1节古典概型。它安排在随机事件的概率之后,几何概型之前,学生还未学习排列组合的情况下教学的。

  古典概型是一种特殊的数学模型,也是一种最基本的概率模型,在概率论中占有相当重要的地位,是学习概率必不可少的内容,同时有利于理解概率的概念,有利于计算一些事件的概率,能解释生活中的一些问题。因此本节课的教学重点是理解古典概型的概念及利用古典概型求解随机事件的概率。

  2、学情分析。

  学生基础一般,但师生之间,学生之间情感融洽,上课互动氛围良好。他们具备一定的观察,类比,分析,归纳能力,但对知识的理解和方法的掌握在一些细节上不完备,反映在解题中就是思维不慎密,过程不完整。

  二、教学目标。

  1、知识与技能目标。

  (1)理解等可能事件的概念及概率计算公式。

  (2)能够准确计算等可能事件的概率。

  2、过程与方法。

  根据本节课的知识特点和学生的认知水平,教学中采用探究式和启发式教学法,通过生活中常见的实际问题引入课题,层层设问,经过思考交流、概括归纳,得到等可能性事件的概念及其概率公式,使学生对问题的理解从感性认识上升到理性认识。

  3、情感态度与价值观。

  概率问题与实际生活联系紧密,学生通过概率知识的学习,可以更好的理解随机现象的本质,掌握随机现象的规律,科学地分析、解释生活中的一些现象,初步形成实事求是的科学态度和锲而不舍的求学精神。

  三、重点、难点。

  1、重点:理解古典概型的概念及利用古典概型求解随机事件的概率。

  2、难点:如何判断一个试验是否是古典概型,分清在一个古典概型中某随机事件包含的基本事件的个数和试验中基本事件的总数。

  四、教学过程。

  1、创设情境,提出问题。

  师:在考试中遇到不会做的选择题同学们会怎么办?在你不会做的前提下,蒙对单选题容易还是蒙对不定项选择题容易?这是为什么?

  通过这个同学们经常会遇到的问题,引导学生合作探索新知识,符合“学生为主体,老师为主导”的现代教育观点,也符合学生的认知规律。随着新问题的提出,激发了学生的求知欲望,使课堂的有效思维增加。

  2、抽象思维。形成概念、

  师:考察试验一“抛掷一枚质地均匀的骰子”,有几种不同的结果,结果分别有哪些?

  生:在试验中随机事件有六个,即“1点”、“2点”、“3点”、“4点”、“5点”和“6点”。

  师:我们把上述试验中的随机事件称为基本事件,它是试验的每一个可能结果。

  师:考察试验二“抛掷一枚质地均匀的硬币”有哪些基本事件?

  生:在试验中基本事件有两个,即“正面朝上”和“反面朝上”。

  师:那基本事件有什么特点呢?

  问题:

  (1)在“抛掷一枚质地均匀的骰子”试验中,会同时出现“1点”和“2点”这两个基本事件吗?

  (2)事件“出现偶数点”包含了哪几个基本事件?

  由如上问题,分别得到基本事件如下的两个特点:

  (1)任何两个基本事件是互斥的;

  (2)任何事件(除不可能事件)都可以表示成基本事件的和。

  (让学生交流讨论,教师再加以总结、概括)

  让学生归纳与总结,鼓励学生用自己的语言表述,从而提高学生的表达能力与数学语言的组织能力

  例1:从字母中任意取出两个不同字母的试验中,有哪些基本事件?

  师:为了得到基本事件,我们可以按照某种顺序,把所有可能的结果写出来,本小题我们可以按照字母排序的顺序,用列举法列出所有基本事件的结果。

  解:所求的基本事件共有6个:

  ____________________________________________________________________________________。

  由于学生没有学习排列组合知识,因此用列举法列举基本事件的个数,不仅能让学生直观的感受到对象的总数,而且还能使学生在列举的时候作到不重不漏,解决了求古典概型中基本事件总数这一难点,同时渗透了数形结合及分类讨论的数学思想。

  师:你能发现前面两个数学试验和例1有哪些共同特点吗?(先让学生交流讨论,然后教师抽学生回答,并在学生回答的基础上再进行补充)

  试验一中所有可能出现的基本事件有“1点”、“2点”、“3点”、“4点”、“5点”和“6点”6个,并且每个基本事件出现的可能性相等,都是;

  试验二中所有可能出现的基本事件有“正面朝上”和“反面朝上”2个,并且每个基本事件出现的可能性相等,都是;

  例1中所有可能出现的基本事件有“A”、“B”、“C”、“D”、“E”和“F”6个,并且每个基本事件出现的可能性相等,都是;

  经概括总结后得到:

  ①试验中所有可能出现的基本事件只有有限个;

  ②每个基本事件出现的可能性相等。

  我们将具有这两个特点的概率模型称为古典概率模型,简称古典概型。

  学生在合作交流的探究氛围中思考、质疑、倾听、表述,体验到成功的喜悦,学会学习、学会合作,充分体现了数学的化归思想。启发诱导的同时,训练了学生观察和概括归纳问题的能力。

  3、概念深化,加深理解。

  试验“向一个圆面内随机地投射一个点,如果该点落在圆内任意一点都是等可能的”。你认为这是古典概型吗?为什么?

  生:不是古典概型,因为试验的所有可能结果是圆面内所有的点,试验的所有可能结果数是无限的,虽然每一个试验结果出现的“可能性相同”,但这个试验不满足古典概型的第一个条件。

  试验“某同学随机地向一靶心进行射击,这一试验的结果只有有限个:命中10环、命中9环……命中5环和不中环’。你认为这是古典概型吗?为什么?

  生:不是古典概型,因为试验的所有可能结果只有7个,而命中10环、命中9环……命中5环和不中环的出现不是等可能的,即不满足古典概型的第二个条件。

  这两个问题的设计是为了让学生更加准确的把握古典概型的两个特点,突破了如何判断一个试验是否是古典概型这一教学难点,培养学生思维的深刻性与批判性。

  4、观察比较,推导公式。

  师:在古典概型下,随机事件出现的概率如何计算?(让学生讨论、思考交流)

  生:试验二中,出现各个点的概率相等,即

  P(“1点”)=P(“2点”)=P(“3点”)=P(“4点”)=P(“5点”)=P(“6点”)

  由概率的加法公式,得

  P(“1点”)+P(“2点”)+P(“3点”)+P(“4点”)+P(“5点”)+P(“6点”)=P(必然事件)=1

  因此P(“1点”)=P(“2点”)=P(“3点”)=P(“4点”)=P(“5点”)=P(“6点”)=

  进一步地,利用加法公式还可以计算这个试验中任何一个事件的概率,例如,

  P(“出现偶数点”)=P(“2点”)+P(“4点”)+P(“6点”)=++==

  P(“出现偶数点”)=?=

  师:根据上述试验,你能概括总结出,古典概型计算任何事件的概率计算公式吗?

  生:_________________________________________________________________。

  学生通过运用观察、比较方法得出古典概型的概率计算公式,体验数学知识形成的发生与发展的过程,体现具体到抽象、从特殊到一般的数学思想,同时让学生感受数学化归思想的优越性和这一做法的合理性。

  师:我们在使用古典概型的概率公式时,应该还要注意些什么呢?(先让学生自由说,教师再加以归纳)在使用古典概型的概率公式时,应该注意:

  ①要判断该概率模型是不是古典概型;

  ②要找出随机事件A包含的基本事件的个数和试验中基本事件的总数。

  深化对古典概型的概率计算公式的理解,也抓住了解决古典概型的'概率计算的关键。

  5、应用与提高。

  例2:单选题是标准化考试中常用的题型,一般是从A,B,C,D四个选项中选择一个正确答案。如果考生掌握了考查的内容,他可以选择惟一正确的答案。假设考生不会做,他随机的选择一个答案,问他答对的概率是多少?

  解:这是一个古典概型,因为试验的可能结果只有4个:选择A、选择B、选择C、选择D,从而由古典概型的概率计算公式得:

  探究:在标准化考试中既有单选题又有不定项选择题,不定项选择题是从A,B,C,D四个选项中选出所有正确的答案,同学们可能有一种感觉,如果不知道正确答案,多选题更难猜对,这是为什么?

  解:这是一个古典概型,因为试验的可能结果只有15个:选择A、选择B、选择C、选择D,选择AB、选择AC、选择AD、选择BC、选择BD、选择CD、选择ABC、选择ABD、选择ACD、选择BCD、选择ABCD,从而由古典概型的概率计算公式得:

  P(“答对”)=1/15

  解决了课前提出的思考题,让学生明确解决概率的计算问题的关键是:先要判断该概率模型是不是古典概型,再要找出随机事件A包含的基本事件的个数和试验中基本事件的总数。

  例3:同时掷两个骰子,计算:

  (1)一共有多少种不同的结果?

  (2)其中向上的点数之和是5的结果有多少种?

  (3)向上的点数之和是5的概率是多少?

  (教师先让学生独立完成,再抽两位不同答案的学生回答)

  学生1:

  ①所有可能的结果是:

  (1,1)(1,2)(1,3)(1,4)(1,5)(1,6)(2,2)(2,3)(2,4)(2,5)(2,6)(3,3)(3,4)(3,5)(3,6)(4,4)(4,5)(4,6)(5,5)(5,6)(6,6)共有21种。

  ②向上的点数之和为5的结果有2个,它们是(1,4)(2,3)。

  ③向上点数之和为5的结果(记为事件A)有2种,因此,由古典概型的概率计算公式可得

  学生2:

  ①掷一个骰子的结果有6种,我们把两个骰子标上记号1,2以便区分,由于1号骰子的每一个结果都可与2号骰子的任意一个结果配对,组成同时掷两个骰子的一个结果,我们可以用列表法得到(如图),其中第一个数表示1号骰子的结果,第二个数表示2号骰子的结果。

  由表中可知同时掷两个骰子的结果共有36种。

  ②在上面的所有结果中,向上的点数之和为5的结果有4种:(1,4),(2,3),(3,2),(4,1)。

  ③由于所有36种结果是等可能的,其中向上点数之和为5的结果(记为事件A)有4种,因此,由古典概型的概率计算公式可得

  师:上面同一个问题为什么会有两种不同的答案呢?(先让学生交流讨论,教师再抽学生回答)

  生:答案1是错的,原因是其中构造的21个基本事件不是等可能发生的,因此就不能用古典概型的概率公式求解。

  师:我们今后用古典概型的概率公式求解时,特别要验证“每个基本事件出现是等可能的”这个条件,否则计算出的概率将是错误的。

  本题通过学生的观察比较,发现两种结果不同的根本原因是——研究的问题是否满足古典概型,从而再次突出了古典概型这一教学重点,体现了学生的主体地位,逐渐使学生养成自主探究能力。同时培养学生运用数形结合的思想,提高发现问题、分析问题、解决问题的能力,增强学生数学思维情趣。

  6、知识梳理,课堂小结。

  (1)本节课你学习到了哪些知识?

  (2)本节课渗透了哪些数学思想方法?

  7、作业布置。

  (1)阅读本节教材内容

  (2)必做题课本130页练习第1,2题,课本134页习题3。2A组第4题

  (3)选做题课本134页习题B组第1题

  8、教学反思。

  本节课的教学设计以“问题串”的方式呈现为主,教学过程中师生共同合作,体验古典概型的特点,公式的生成、发现,把“数学发现”的权力还给学生,让学生感受知识形成的过程,获得数学发现的体验。将学习的主动权较完整地交还给学生。

  本节课始终本着在教师的引导下,学生通过讨论、归纳、探究等方式自主获取知识,从而达到满意的教学效果。构建利于学生学习的有效教学情境,较好地拓展师生的活动空间,符合新课程的理念。

高二数学的教学计划9

  教学目标

  1.通过实例理解样本的数字特征,如平均数,方差,标准差.

  2.能根据实际问题的需求合理地选取样本,从数据样本中提取基本的数字特征,并作出合理的解释.

  重点难点

  重点(1)用算术平均数作为近似值的理论根据.(2)方差和标准差刻画数据稳定程度的理论根据.

  难点:(1)平均数对总体水平进行评价时的可靠性(和中位数和众数之间的联系).(2)通过实例使学生理解样本数据的方差,标准差的意义和作用.

  教学过程

  算术平均数和加权平均数

  (一)问题情境

  某校高一(1)班同学在老师的布置下,用单摆进行测试,以检验重力加速度.全班同学两人一组,在相同条件下进行测试,得到下列实验数据(单位:m/s2):

  9.62 9.54 9.78 9.94 10.019.66 9.88

  9.68 10.32 9.76 9.45 9.99 9.81 9.56

  9.78 9.72 9.93 9.94 9.65 9.79 9.42 9.68 9.70 9.84 9.90

  问题1:怎样用这些数据对重力加速度进行估计?

  一般地,n个数据按大小顺序排列,处于最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数的中位数(median).

  一般地,n个数据按大小顺序排列,处于最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数的中位数

  一组数据中出现次数最多的那个数据叫做这组数的众数,

  算术平均数是指资料中各观测值的总和除以观测值个数所得的商,简称平均数或均数.

  问题2:用这些特征数据对总体进行估计的优缺点是什么?

  21世纪教育网

  用平均数作为一组数据的代表,比较可靠和稳定,它与这组数据中的每一个数都有关系.对这些数据所包含的信息的'反映最为充分,因而应用最为广泛,特别是在进行统计推断时有重要作用,但计算较繁琐,并且易受极端数据的影响.

  用众数作为一组数据的代表,可靠性较差,但众数不受极端数据的影响,并且求法简便,当一组数据中个别数据变动较大时,适宜选择众数来表示这组数据的“集中趋势”.

  用中位数作为一组数据的代表,可靠性也较差,但中位数也不受极端数据的影响,也可选择中位数来表示这组数据的“集中趋势”.

  平均数、中位数、众数都是描述数据的“集中趋势”的“特征数”,它们各自特点如下:

  任何一个样本数据的改变都会引起平均数的改变.这是中位数、众数都不具备的性质,也正是这个原因,与众数、中位数比较起来,平均数可以反映出更多的关于样本数据全体的信息.

  问题3:我们常用算术平均数 (其中ai(i=1,2,…,n)为n个实验数据)作为重力加速度的近似值,它的依据是什么呢?

  处理实验数据的原则是使这个近似值与实验数据之间的离差尽可能地小,我们考虑(x-a1)2+(x-a2)2+…+(x-an)2,当x为何值时,此和最小.

  (x-a1)2+(x-a2)2+…+(x-an)2=nx2-2(a1+a2+…+an)x+ a12+a22+…+an2.

  所以当x=a1+a2+…+ann时离差的平方和最小.

  (二)数学理论

  故可用x=a1+a2+…+ann作为表示这个物理量的理想近似值,称其为这n个数据a1+a2+…+an的平均数或均值一般记为:

  -a=a1+a2+…+ann.

  (三)数学应用

  例1 某校高一年级的甲、乙两个班级(均为50人)的语文测试成绩如下(总分:150分),试确定这次考试中,哪个班的语文成绩更好一些.

  甲班:

  112 86 106 84 100 105 98 102 94 107

  87 112 94 94 99 90 120 98 95 119

  108 100 96 115 111 104 95 108 111 105

  104 107 119 107 93 102 98 112 112 99

  92102 93 84 94 94 100 90 84 114

  乙班

  116 95 109 96 106 98 108 99 110 103

  94 98 105 101 115 104 112 101 113 96

  108 100 110 98 107 87 108 106 103 97

  107 106 111 121 97 107 114 122 101 107

  107 111 114 106 104 104 95 111 111 110

  分析:我们可用一组数据的平均数衡量这组数据的水平,因此,分别求得甲、乙两个班级的平均分即可.

  解:用科学计算器分别求得

  甲班的平均分为101.1,

  乙班的平均分为105.4,

  故这次考试乙班成绩要好于甲班.

  此处介绍Excel的处理方法.

  例2:已知某班级13岁的同学有4人,14岁的同学有15人,15岁的同学有25人,16岁的同学有6人, 求全班的平均年龄.

  解:13×4+14×15+15×25+16×64+15+25+6

  =13×450+14×1550+15×2550+16×650

  这里的450,1550,2550,650,其实就是13,14,15,16的频率.

  [数学理论]一般地若取值为x1,x2,…xn的频率分别是p?1,p2,…pn,则其平均数为x1p1+x2p2+…+xnpn.

  睡眠时间 人 数 频 率

  [6,6.5) 5 0.05

  [6.5,7) 17 0.17

  [7,7.5) 33 0.33

  [7.5,8) 37 0.37

  [8,8.5) 6 0.06

  [8.5,9] 2 0.02

  合计 100 1

  例3.下面是某校学生日睡眠时间的抽样频率分布表(单位:h),试估计该校学生的日平均睡眠时间.

  分析:要确定这100名学生的平均睡眠时间,就必须计算其总睡眠时间.由于每组中的个体睡眠时间只是一个范围,可以用各组区间的组中值近似地表示.

  解法1:总睡眠时间约为

  6.25×5+6.75×17+7.25×33+7.75×37+8.25×6

  +8.75×2=739(h).

  故平均睡眠时间约为7.39h.

  解法2:求组中值与对应频率之积的和

  原式=6.25×0.05+6.75×0.17+7.24×0.33

  +7.75×0.37+8.25×0.06+8.75×0.02=7.39(h).

  答 估计该校学生的日平均睡眠时间约为7.39h.

  21世纪教育网

  例4.某单位年收入在10000到15000、15000到20000、20000到25000、25000到30000、30000到35000、35000到40000及40000到50000元之间的职工所占的比分别为10%,15%,20%,25%,15%,10%和5%,试估计该单位职工的平均年收入.

  分析:上述比就是各组的频率.

  解 估计该单位职工的平均年收入为

  12500×10%+17500×15%+22500×20%+27500×25%+32500×15%

  +37500×10%+45000×5%=26125(元).

  答估计该单位人均年收入约为26125元.

  例5.小明班数学平均分是78分,小明考了80分,老师却说他是倒数几名,你觉得这可能吗?(再看书P64思考)

高二数学的教学计划10

  一,教学内容

  这学期按照教育局教研室的要求,教学任务比较重。选修1-1,第三章《导数》,根据教研室的计划,应该安排在春节前。鉴于期末考试临近,这一章没有学习,所以这学期的教学内容有以下几个部分:选修1-1 《导数》,选修1-2,共四章《统计案例》,《推理与证明》,《数系的扩充与复数的引入》。

  二,教学策略

  根据年山东省高考数学(文科)大纲的要求,应及时调整教学计划,切实重视学生学习的实施,让学生的'学习成为有效的劳动。精心备课,精心指导,针对目标学生不放松,努力使目标学生数学成绩有效,积极交流,提高教学水平,同时认真学习《框图》,学习新课程,应用新课程。

  第三,具体措施

  这学期我主要从以下几个方面做好教学工作:

  1、注重学习计划指导学习,善用好学案例。注重研究老师如何说话,就是注重研究学生如何学习。

  2.尽量分层次做作业,尤其是加餐,提高尖子生的学习成绩。

  3.特别注意学生作业的落实,不定时查看学生的集锦和作业本。

  4.组织单位通过,做好试卷讲评工作。

  5.积极沟通目标学生的想法和感受

高二数学的教学计划11

  一、指导思想

  努力把握《教学大纲》和《考试大纲》的各项基本要求,立足于基础知识和基本技能的教学,注重渗透数学思想和方法。针对学生实际,不断研究数学教学,改进教法,指导学法,立足掌握基本技能和基本能力,着力培养学生的创新精神,运用数学的.意识和能力,奠定他们终身学习的基础。坚持一切为了学生,为了学生一切,人人都能成功的教学理念。

高二数学的教学计划12

  一、指导思想:

  在学校教学工作意见指导下,在级部工作的框架下,认真落实学校对备课组工作的各项要求,严格执行学校的各项教学制度和要求,强化数学教学研究,提高全组老师的教学、教研水平,明确任务,团结协作,圆满完成教学教研任务。具体目标如下。

  1、获得必要的数学基础知识和基本技能,理解基本的数学概念、数学结论的本质,了解概念、结论等产生的背景、应用,体会其中所蕴涵的数学思想和方法,以及它们在后续学习中的作用。通过不同形式的自主学习、探究活动,体验数学发现和创造的历程。

  2、提高空间想像、抽象概括、推理论证、运算求解、数据处理等基本能力。

  3、提高数学地提出、分析和解决问题(包括简单的实际问题)的能力,数学表达和交流的能力,发展独立获取数学知识的能力。

  4、发展数学应用意识和创新意识,力求对现实世界中蕴涵的一些数学模式进行思考和作出判断。

  5、提高学习数学的兴趣,树立学好数学的信心,形成锲而不舍的钻研精神和科学态度。

  6、具有一定的数学视野,逐步认识数学的科学价值、应用价值和价值,形成批判性的思维习惯,崇尚数学的理性精神,体会数学的美学意义,从而进一步树立辩证唯物主义和历史唯物主义世界观。

  二、学生基本情况:

  高二理可学生共有926人,多数学生学习积极性强,部分学生学习数学的气氛不浓、基础较差。学生对学过的知识内容复习不及时,致使对高二的数学学习有很大的影响,成绩充分反映尖子生少,成绩特差的学生也有不少,有一批思维相当灵活的学生,但学习不够刻苦,学习成绩一般,但有较大的潜力,以后好好的引导,进一步培养他们的学习兴趣,从而带动全体同学的学习热情,提高学生的数学成绩。

  三、教法分析:

  1、选取与内容密切相关的,典型的,丰富的和学生熟悉的素材,用生动活泼的语言,创设能够体现数学的概念和结论,数学的思想和方法,以及数学应用的学习情境,使学生产生对数学的亲切感,引发学生“看个究竟”的冲动,以达到培养其兴趣的目的。

  2、通过“观察”,“思考”,“探究”等栏目,引发学生的思考和探索活动,切实改进学生的'学习方式。

  3、在教学中强调类比,推广,特殊化,化归等数学思想方法,尽可能养成其的习惯。

  四、教学:

  1、认真落实,搞好集体备课。每周至少进行一次集体备课。各组老师根据自已承担的任务,提前一周进行单元式的备课,并出好本周的单页练习。教研会时,由一名老师作主要发言人,对本周的教材内容作分析,然后大家研究讨论其中的重点、难点、等。

  2、详细计划,保证练习质量。教学中用配备资料《学案导学》,要求学生按教学进度完成相应的习题,教师要提前向学生指出不做的题,以免影响学生的时间,每周以内容“滚动式”编两份练习试卷,做后老师要收齐批改,存在的普遍性问题要安排时间讲评。

  3、抓好第二课堂,稳定数学优生,培养数学能力兴趣。竞赛班的教学进度要加快,教学难度要有所降低,各班要培育好本班的优生,注意激发学生的学习兴趣,随时注意学生的指导。

  4、加强辅导工作。对已经出现数学学习困难的学生,教师的下班辅导十分重要。教师教学中,要尽快掌握班上学生的数学学习情况,有针对性地进行辅导工作,既要注意照顾好班上优生层,更不能忽视班上的困难学生。

高二数学的教学计划13

  教材分析: 本学期我任教05财会(3)班数学,所选的教材是人民教育出版社职业教育中心编著的《数学(基础版)》该教材是在原有职业高中数学教材的基础上,依据国家教育部新制定的《中等职业学校数学教学大纲(试行)》重新编写的,具有以下特点: 大纲对传统的初等数学教育内容进行了精选,把理论上、方法上以及代生产与生活中得到广泛应用的知识作为各专业必学的基本内容。根据大纲要求,把函数与几何,以及研究函数与几何的方法作为教材的核心内容。 多数中职学生对学过的数学知识需要复习与提高,才能顺利进入中职阶段的数学学习。这套数学教材编写从学生的实际出发,提高中职学生的数学素质,使多数学生能完成大纲中规定的教学要求,以保证中职学生能达到高中阶段的基本数学水准。

  3.增加较大的使用弹性 考虑中等职业学校专业的多样性,各对数学能力的要求也不相同,教学要求给出了较大的选择范围,增加了教学的弹性。教材中给出了三个层次:一是必学的内容分两种教学要求(在教参中指出);二是教材中配备一些难度较大的习题,供学有余力的学生去做,培养这些学生的解题能力;三是编写了选学内容,选学内容主要是深化基本内容所学知识和应用基本内容解决实际问题的能力。

  4.注重数学应用意识的培养 每章专设应用一节,列举数学在生活实际、现代科学和生产中应用的'例子,培养学生用数学解决实际问题的意识和能力。

  5.注重培养学生使用计算机工具的能力 在大纲中,要求培养学生使用基本计算工具的恩能够里。这就要求学生掌握使用计数器的技能,所以在新教材中增加了用计数器做的练习题。有条件的学生还可以培养学生使用计算机技术教学工作计划本学期使用的是第二册的教材,内容包括:平面解析几何,立体几何,排列、组合与二项式定理,概率与统计初步。 每章编写结构:引言,正文(大节、小节、联系、习题),复习问题和复习参考题,阅读材料(数学文化)等。除个别标注星号的选学内容外,都是必学内容。 学生情况分析及教学对策: 05财会(3)班是我刚接手的班级,因而对学生的情况并不是非常熟悉。从总体上看,该班的学习中坚力量主要在一小部分的女生,其他学生学习积极性较差。在要学习的学生当中,普遍表现出底子薄、基础差的特点,对以往知识的缺漏非常多。因而在教学过程当中,及时补遗、查漏补缺尤为重要。知识引入环节我设置旧知识补遗,先回顾新课所涉及到的旧知识点;对学生的要求以能处理简单的操作题为主。另外,舒适的环境对学生的情绪也有挺大的影响,因而在教学过程中应渗入环境教育,培养学生的环境保护意识。

高二数学的教学计划14

  一、教学内容分析

  本节课教学内容是《普通高中课程标准实验教科书·数学必修3》(苏教版)中 “3.4互斥事件”第1课时。教材既介绍计算概率的两种简单模型——古典概型、几何概型,开始学习求解复杂事件的概率。对复杂事件的概率的计算,就需要分析复杂事件与基本事件间的关系,以及复杂事件发生的概率与基本事件发生的概率间的关系,为此,教材引入互斥事件、对立事件概念,从中渗透化繁为简的指导思想。本节内容在高考考试说明要求为A级。

  二、学生学习情况分析

  针对本校提倡的“先学——后批——自纠——点评——反思”教学流程,学生在充分预习的情况下对教学案中的“自学质疑”板块已有较好的把握,绝大多数学生能够完成其中问题,但仍有部分学生对互斥事件、对立事件、基本事件三者概念产生混淆,对古典概型、几何概型的应用不太熟练,对问题的情境的理解不够到位,分类讨论、正难则反的数学思想还没得到深度认同。

  三、设计思想

  本节课是在新课程标准实施背景下,结合市教育局倡导的“三案六环节”教学模式,结合自身“知识问题化,问题层次化”的设计思路展开的,与以往稍有不同的是突出了学生作为课堂的主体地位,教师主要发挥引导、评价及完善功能。整个过程为学生提供充分自由表达、质疑、探究、讨论问题的机会,让学生通过个人、小组、集体等多种解决疑难问题的尝试活动,在知识巩固和灵活运用的过程中,逐步培养学生发现问题、探索问题、解决问题的能力和创造性思维的能力。

  四、设计思路

  (1)从时间分配上来说,首先由学生回答课件提出的一系列问题占用10分钟,接着有15分钟的精彩展示,由学生根据课前板书的内容展开讲解交流,然后借助导学案的巩固题、变题进行讨论占用15分钟,最后有5分钟的课堂小结。

  (2)从教学安排上来说,上课前,学案学生提前完成,教师及时审阅初步了解学情状况;课堂上,学生精彩展示细致书写并配以适当讲解达到自己说的出,大家听得懂,接着,提供变题让全体学生积极解答达到及时巩固升华的目的.,接着学生完成本课时的巩固案,最后,让学生作出课堂反思总结。

  (3)从内容安排上来说,分三大块:第一块,问题情景(课件);第二块,交流展示(预习案);第三块,巩固提高(巩固案、变题)。

  五、教学目标

  1. 了解互斥事件及对立事件的概念;

  2. 能判断两个事件是否是互斥事件还是对立事件;

  3. 了解两个互斥事件概率的计算公式;

  4. 注意学生思维习惯的培养,在顺向思维受阻时,转而逆向思维;

  5. 通过学生“自学、互学、群学”培养学生自主探究和合作交流的良好品质,激发学生学习数学的兴趣。

  六、教学重点和难点

  教学重点:互斥事件和对立事件概率的应用;

  教学难点:互斥事件和对立事件概念的理解;

  教学准备:学案、巩固案、多媒体课件、遥控激光笔。

  七、教学过程设计

  (一) 课前:学生完成预学案,教师及时审阅

  [设计意图] 数学教学立足于问题处理,一方面,先给学生足够的时间充分思考不仅可以增加课堂教学的容量,而且能够提高教学内容的针对性,从而达到课堂效益的最大化;另一方面,教师能够通过教学案批阅反馈的信息,很好地了解学生对知识的掌握情况,抓住学生的难点和疑点,从而提高课堂讲解的实效性。

  [师生活动] 教师:由课代表转发教学案(教学案另补附上)

  学生:独立完成预学案部分,并及时上交(自学)

  教师:及时审阅,做好反馈后返还学生

  学生:领取教学案,相互讨论做好订正(互学、群学)

  [学情预设] 学生通过“自学、互学、群学”后,主要会有如下疑难问题:

  (1)交流展示中第1题,学生对互斥事件和对立事件的概念的把握不够准确.

  (2)交流展示中第2题,学生在正面分析问题时分类的情况较多,尝试可以通过逆向思维解决,从而避免分类,渗透“正难则反”的数学思想.

  (3)交流展示中第3题,学生在将复杂事件通过基本事件表示时有一定的难度,还有解答时的规范性有待加强.

  (二) 课堂:教师设计问题串,学生互动交流

  [设计意图] “知识问题化,问题层次化”一组好的问题将学生带入到一种情境,能够激发学生的求知欲,使学生学习变被动为主动,从而在课堂上迸发出智慧的火花.

  [师生活动] 教师:问题1.设置问题情景,一次考试中,一位学生能否既为良又为优? 学生:·······

  教师:问题2.那么这位同学体育成绩为“优良”(优或良)的概率是多少? 学生:······

  教师:问题3.尝试抽象出互斥事件的概念及概率的求解公式?

  学生:······

  教师:问题4.在两个互斥事件中,如果必有一个发生,则两者的关系如

  何?

  学生:······

  教师:引导学生找出互斥事件、对立事件的关系并加以总结.

  (三)课堂:学生精彩展示,教师实时点评

  [设计意图] 兴趣是最好的老师,激发学生对数学学习的热情和学生的内驱力是教师的艺术所在。学生将自己的学习成果展示出来与大家分享,在交流过程中潜移默化的增强了学生的自信心,达到让学生不仅会写而且会说,学会分析问题解决问题。教师把自身的角色转换到听众的位置并适时加以点拨引导,形成一种师生平等、共同进步的和谐局面。

  [师生活动] 教师:根据学生板演内容,学生有序讲解。

  学生:·······

  教师:问题1:口述互斥事件、对立事件、基本事件的概念,并说明三

  者的关系?

  学生:······

  教师:问题2:此问题可以从反面这个角度考虑吗,有怎样的效果呢?

  学生:······

  教师:问题3:比较发现设置的两个问题,给同学哪些启示?

  学生:······

  教师:问题4:变题介绍将“4只红球,4只白球中随机取出3只球”,

  给出的下列事件是对立事件的有哪些?

  学生:······

  (四)课堂:教师善于变题,学生随机应变

  [设计意图] 教学内容的深度应该逐层推进,注意将学生思维提高到一定的高度,从而达到智慧火花的碰撞。教师能够善于捕捉学生的闪光点,提高学生学习的热情和动力,使学生体验到成功的愉悦感,变“要我学”为“我要学”的主动学习。

  [师生活动] 教师:问题1:迅速完成巩固案的强化练习,总结课堂所学知识点?

  学生:······

  教师:问题2:解答概率习题的规范?

  学生:······

  [学情预设] 既完成预学案上习题之后,教师发放巩固案供学生解答,主要问题预测如下:

  (1)矫正反馈中练习题对互斥事件和对立事件知识点的强化.

  (2)学生对概率解答题的解答规范有所欠缺.

  (五)课堂:学生自我总结,教师完善补充

  [设计意图] 经过习题演练过后,必须形成一定的思想方法,这样才能将数学学活,

  知识的升华过程所能达到的高度因人而异,但数学素养的提高可以通过交流互相弥补。通过学生的总结,不仅培养学生的归纳总结的能力和语言表达能力,而且在师生交流过程中各取所长,达到“青出于蓝胜于蓝”的境界。

  [师生活动] 教师:问题1:变题中,分类的情况有哪些?

  学生:, ······

  教师:.

  教师:问题2:出现“至多”、“至少”字眼时,常常需要逆向思维?

  学生:, ······

  [学情预设] 主要难点如下:

  (1)学生对问题分类过多时,需要细心思考,要求“不重复,不遗漏”的原则;

  (2)学生解决问题时习惯正面解决,对逆向思维的把握不准。

  (六)课后:学生完成巩固案,教师及时批阅反馈

  [设计意图]数学知识的内化是需要一个过程,是经过学生自身的磨合才能得到认同的,经过一些有针对性的练习能够及时巩固,达到预期的效果.

  [作业布置] 1.巩固案必做题

高二数学的教学计划15

  一、学生基本情况

  261班共有学生75人,268班共有学生72人。268班学习数学的气氛较浓,但由于高一函数部分基础特别差,对高二乃至整个高中的数学学习有很大的影响,数学成绩尖子生多或少,但若能杂实复习好函数部分,加上学生又很努力,将来前途无量。若能好好的引导,进一步培养他们的学习兴趣,

  二、教学要求

  (一)情意目标

  (1)经过分析问题的方法的教学、经过不等式的一题多解、多题一解、不等式的一题多证,培养学生的学习的兴趣。

  (2)提供生活背景,使学生体验到不等式、直线、圆、圆锥曲线就在身边,培养学数学用数学的意识。

  (3)在探究不等式的性质、圆锥曲线的性质,体验获得数学规律的艰辛和乐趣,在分组研究合作学习中学会交流、相互评价,提高学生的合作意识。

  (4)基于情意目标,调控教学流程,坚定学习信念和学习信心。

  (5)还时空给学生、还课堂给学生、还探索和发现权给学生,给予学生自主探索与合作交流的机会,在发展他们思维能力的同时,发展他们的数学情感、学好数学的自信心和追求数学的科学精神。

  (6)让学生体验发现挫折矛盾顿悟新的发现这一科学发现历程的幻妙多姿

  (二)能力要求

  1、培养学生记忆能力。

  (1)在对不等式的'性质、平均不等式及思维方法与逻辑模式的学习中,进一步培养记忆能力。做到记忆准确、持久,用时再现得迅速、正确。

  (2)经过定义、命题的总体结构教学,揭示其本质特点和相互关系,培养对数学本质问题的背景事实及具体数据的记忆。

  (3)经过揭示解析几何有关概念、公式和图形直观值见的对应关系,培养记忆能力。

  2、培养学生的运算能力。

  (1)经过解不等式及不等式组的训练,培养学生的运算能力。

  (2)加强对概念、公式、法则的明确性和灵活性的教学,培养学生的运算能力。

  (3)经过解析法的教学,提高学生是运算过程具有明晰性、合理性、简捷性能力。

  (4)经过一题多解、一题多变培养正确、迅速与合理、灵活的运算能力,促使知识间的滲透和迁移。

  (5)利用数形结合,另辟蹊径,提高学生运算能力。

  3、培养学生的思维能力。

  (1)经过含参不等式的求解,培养学生思维的周密性及思维的逻辑性。

  (2)经过解析几何与不等式的一题多解、多题一解、经过不等式的一题多证,培养思维的灵活性和敏捷性,发展发散思维能力。

  (3)经过不等式引伸、推广,培养学生的创造性思维。

  (4)加强知识的横向联系,培养学生的数形结合的能力。

  (5)经过解析几何的概念教学,培养学生的正向思维与逆向思维的能力。

  (6)经过典型例题不同思路的分析,培养思维的灵活性,是学生掌握转化思想方法。

  4、培养学生的观察能力。

  (1)在比较鉴别中,提高观察的准确性和完整性。

  (2)经过对个性特征的分析研究,提高观察的深刻性。

  (三)知识要求

  1、掌握不等式的概念、性质及证明不等式的方法,不等式的解法;

  2、经过直线与圆的教学,使学生了解解析几何的基本思想,掌握直线方程的几种形式及位置关系,掌握简单线性规划问题,掌握曲线方程、圆的概念。

  3、掌握椭圆、双曲线、抛物线的定义、方程、图形及性质。

  三、教材简要分析

  1、不等式的主要内容是:不等式性质、不等式证明、不等式解法。不等式性质是基础,不等式证明是在其基础上进行的;不等式的解法是在这一基础上、依据不等式的性及同解变形来完成的。不等式在整个高中数学中是一个重要的工具,是培养运算能力、逻辑思维能力的强有力载体。

  2、直线是最简单的几图形,是学习圆锥曲线、导数和微分等知识的的基础。,是直线方程的一个直接应用。主要内容有:直线方程的几种形式,线性规划的初步知识,两直线的位置关系,圆的方程;斜率是最重要的概念,斜率公式是最重要的公式,直线与圆是数形结合解析几何相互为用思想的载体。

  3、圆锥曲线包括椭圆、双曲线、抛物线的定义,标准方程,简单几何性质,以及它们在实际中的一些运用。椭圆、双曲线、抛物线分别是满足某些条件的点的轨迹,由这些条件可以求出它们的方程,并经过分析标准方程研究它们的性质。

  四、重点与难点

  (一)重点

  1、不等式的证明、解法。

  2、直线的斜率公式,直线方程的几种形式,两直线的位置关系,圆的方程。

  3、椭圆、双曲线、抛物线的定义,标准方程,简单几何性质。

  (二)难点

  1、含绝对值不等式的解法,不等式的证明。

  2、到角公式,点到直线距离公式的推导,简单线性规划的问题的解法。

  3、用坐标法研究几何问题,求曲线方程的一般方法。

  五、教学措施

  1、教学中要传授知识与培育能力相结合,充分调动学生学习的主动性,培育学生的概括能力,是学生掌握数学基本方法、基本技能。

  2、持之以恒与高三联系,切实面向高考,以五大数学思想为主线,有目的、有计划、有重点,避免面面俱到,减轻学生的学习负担。

  3、加强教育教学研究,持之以恒学生主体性原则,持之以恒循序渐进原则,持之以恒启发性原则。研究并采用以发现式教学模式为主的教学方法,全面提高教学质量。

  4、积极参加与组织集体备课,共同研究,努力提高授课质量

  5、持之以恒向同行听课,取人所长,补己之短。相互研究,共同进步。

  6、持之以恒学法研讨,加强个别辅导(差生与优生),提高全体学生的整体数学水平,培育尖子学生。 7、加强数学研究课的教学研究指导,培养学识的动手能力。

  六、课时安排

  本学期共81课时

  1、不等式18课时

  2、直线与圆的方程25课时

  3、圆锥曲线20课时

  4、研究课18课时

【高二数学的教学计划】相关文章:

高二数学的教学计划05-01

高二数学教学计划08-01

高二数学教学计划(15篇)12-24

高二数学教学计划15篇12-17

高二数学教学计划(汇编15篇)01-19

高二数学教学计划(通用15篇)03-17

高二数学教学计划(合集15篇)03-30

高二数学教学计划(集合15篇)03-30

高二数学教学计划汇编15篇03-31