初中数学教学设计

时间:2022-08-06 10:02:28 教学设计 我要投稿

人教版初中数学教学设计

  作为一位无私奉献的人民教师,可能需要进行教学设计编写工作,教学设计要遵循教学过程的基本规律,选择教学目标,以解决教什么的问题。怎样写教学设计才更能起到其作用呢?以下是小编帮大家整理的人教版初中数学教学设计,欢迎大家分享。

人教版初中数学教学设计

人教版初中数学教学设计1

  近年来,命题改革中加强对学生阅读能力的考核,特别是阅读理解题成了中考数学的新题不仅在各级各类的命题改革中加强对学生阅读能力的考核,对数学阅读教学提出了新的要求,而且从人的发展、人才的培养角度思考,也需要加强数学阅读能力的培养。特别是阅读理解题成了中考数学的新题型,具有很强的选拔功能。因此,在初中数学教学中,应当重视阅读教学,充分利用阅读的形式,加强数学阅读能力的培养。

  一、加强广大师生对数学阅读重要性的理解

  数学教科书是专家在充分考虑学生生理心理特征、教育教学原理、数学学科特点等因素的基础上精心编写而成,具有极高的阅读价值。数学教学活动中,数学阅读是“人——本”对话的数学交流形式。在这种形式中,学生能通过教科书的标准语言来规范自己的数学用语,能有效地促进数学阅读水平的发展,准确叙述解题过程中有关的观点和进行严谨的逻辑推理。因此,数学阅读不仅能促进学生数学语言水平的发展,而且有助于学生更好地掌握数学。另外,每年一度的中考试题中都设置了数学应用题,阅读理解题,而学生每遇到应用题的问答便觉得困难重重,其主要原因是学生缺乏阅读数学的方法。因此,数学教学有必要重视数学阅读。

  二、初中数学阅读教学的教学原则

  在初中数学教学中进行阅读教学,应当遵循如下的教学原则:

  1.主体性原则。从根本上承认和尊重受学生的主体性,使学生能动地参与到数学阅读活动的全过程中来,将自己进行的阅读活动作为意识对象,不断对其进行积极的监控,调节;规划阅读进程,独自获得必要的信息和资料;不断培养自我监控,自我调节的习惯,逐步学会探索地进行数学阅读与数学学习。

  2.差异性原则。学生在个体发展区、学习方式、知识基础、思维品质等多种因素上的差异导致学生阅读能力的差异。也决定了教师必须对不同层面学生给以不同的关注,在阅读过程中,学生独立阅读的过程为教师提供了充足的课堂巡视时间,使教师能够将统一学习变成个别指导,重点对个别阅读能力较差进行指导。

  3.内化性原则。内化的基本条件是对数学语言的感知水平,不仅包括对数学学科本身的概念、法则、定律、公式等的理解,而且包括学生的元认知水平的控制和调节。因此,在阅读过程中要不断地使学生充分实践监控的各种具体策略和技能,进而逐步内化为自我监控能力,使其能在新的条件下,灵活运用这些策略和技能进行自我监控。

  4.反馈性原则。个体的自我反馈,自我评价的意识和能力是至关重要的。教师应及时、准确、适当地对学生的自我监控做出评价,指导他们逐步学会对学习方法,策略运用及结果进行反馈和评价。同时,学生根据教师的指导,对自己的阅读监控过程,所用的策略及结果进行调控和改进,不断提高思维的抽象概括水平,从而不断发展与完善自己的数学认知结构。

  5.建构性原则。阅读过程是数学建构的过程,是通过对数学材料进行部分与整体的交替感知去构建数学结构,领悟形式化运动的过程。在阅读过程中学生主动探索,充分利用数学知识特有的逻辑性和数学内容的结构特点,不断在课文的适当地方由上文做出猜想、估计,再通过与已知相对照,加以修正,从而获得新知识。

  三、实施数学阅读教学的具体途径

  1.预习的阅读指导

  在课堂教学中存在这样的现象:部分学生认为,没有预习的必要,反正教师都要讲,上课认真听就是了。这是一种错误的认识。预习的作用主要表现在以下几个方面:能提高学生听课的效率,有利于他们更好地做课堂笔记;培养学生的自学能力;可以巩固学生对知识的记忆。那么,怎样指导学生预习呢?可以按如下步骤进行:首先选择好预习的时间,指导学生迅速地浏览即将学习的教材,然后让他们带着问题详细阅读第二遍,并在阅读过程中做好预习笔记,以便于接下来学生能有目的地听课。

  2.数学教材的阅读指导

  (1)阅读目录标题。目录标题是课本的纲目,是每一章节的精华。阅读目录标题就等于了解了全文的框架结构。阅读了课本内容就使目录标题具体化了。逐步养成“标题联想”的习惯。

  (2)阅读概念

  我们所希望达到的指导效果是:让学生在阅读概念时能够正确理解概念中的字、词、句,能正确进行文字语言、图形语言和符号语言的互译,并能注意到联系实际找出反例或实物;学生能弄清数学概念的内涵和外延,也就是既能区分相近的概念,又能知道其适用范围。

  (3)阅读代数式

  大多数学生在阅读代数式时,只是按照代数式的顺序去读。教师应教会学生用多种方法读同一个代数式,同时,在阅读的过程中要注意式子本身的特点及其普遍性。

  (4)阅读例题

  对于初中学生例题阅读的'指导,应按以下几个步骤进行:首先,要让学生认真审题;分析解题过程的关键所在,尝试解题;其次,要让学生比较例题和教材解法的优劣,对一组相关联的例题要相互比较,着力寻找,领悟解题规律,掌握规范书写格式。并使解题过程的表达即简洁又符合书写格式;最后,还要引导学生总结解题规律,并努力探求新的解题途径。

  (5)阅读公式

  不要让学生死记硬背公式,关键是要让他们看清教材是怎样把公式一步一步推导出来的,要提醒学生注意认真阅读公式的推导过程。同时要让学生明白公式的特征并能设法记住,另外还要让他们注意公式的应用条件,弄明白有关公式的内在联系,了解公式的运用、通用、合用、变用和巧用。

  (6)阅读数学定理。注意分清定理的条件和结论;探讨定理的证明途径和方法,通过与课本对照,分析证法的正误、优劣;注意联系类似定理,进行分析比较、掌握其应用;要思考定理可否逆用,推广及引伸。

  (7)阅读提示与说明

  教材中相关知识及许多习题的后面都附有说明或小括号式的提示语。例如,代数式概念中的“运算符号”,教材特指加、减、乘、除、乘方运算;要告诉学生对于这些说明或提示语,千万不可忽视,往往解题的某一条件或关键正隐藏在这里,同时对选学内容,教师也应在自习课上给出相关的阅读材料。

  (8)阅读章头图和小结

  章头图让学生对本章要学的知识有一个初步的认识和了解,明确要学的内容,做到心中有数、目的明确;而认真阅读小结,则能教学生学会自我总结,这是一个归纳、总结、提升的过程。

  3.加强课外阅读,丰富学生知识

  近年来应用题的考试情况告诉我们,数学阅读不能仅仅局限于教材。教师应向学生推荐适宜的课外阅读材料,给学生提供一些数学应用题让学生阅读,不一定要求他们全会做,但必须弄清题意,对于当今社会实践中出现的新名词有所了解,如“低炭”、“环保”、“利息税”、“利润”、“毛利润”等。

  四、数学阅读教学的价值

  重视数学阅读,培养阅读能力,有助于个别化学习,使每个学生都能够通过自身的努力达到他所能达到的最高水平,实现素质教育的目标。要想使数学素质教育的目标得到落实,使学生不再感到数学难学,就必须重视数学阅读教学。教师应加强指导学生认真阅读课文,强调学生对数学课文的阅读和理解,以促使学生养成良好的自学能力,即终身学习的能力。这将在整个中学数学教学中形成一种以培养自学能力为目的的教学风气,同时有利于转变数学教师的教学观念,改变传统的教学方式,优化过程,提高技巧,提高课堂教学的效率,拓展教师的视野及知识结构。

人教版初中数学教学设计2

  一、学情分析

  八年级学生具有强烈的好胜心和求知欲,抽象思维趋于成熟,形象直观思维能力较强,具有一定的独立思考、实践操作、合作交流、归纳概括等能力,能进行简单的推理

  二、教材分析

  这节课是人教版八年级第十八章第一节的内容,教学内容是勾股定理公式的推导、证明及其简单的应用。本节课是在学生已经掌握了直角三角形有关性质的基础上进行学习的,勾股定理是几何中最重要的定理之一,它揭示的是直角三角形中三条边之间的数量关系,将数与形密切联系起来,为以后学习四边形、圆、解直角三角形等数学知识奠定了基础。它有着丰富的历史背景,在数学的发展中起着重要的作用,在现实生活中也有着广泛的应用。学生通过对勾股定理的学习,可以在原有的基础上对直角三角形有进一步的认识和理解。

  三、教学目标设计

  知识与技能

  探索勾股定理的内容并证明,能够运用勾股定理进行简单计算和运用

  过程与方法

  (1)通过观察分析,大胆猜想,探索勾股定理,培养学生动手操作、合作交流、逻辑推理的能力。

  (2)在探索勾股定理的过程中,让学生经历“观察—猜想—归纳—验证”的数学过程,并体会数形结合和从特殊到一般的思想方法。

  情感态度与价值

  (1)在探索勾股定理的过程中,培养学生的合作交流意识和探索精神,增进数学学习的信心,感受数学之美,探究之趣。

  (2)利用远程教育资源介绍中国古代勾股方面的成就,激发学生热爱祖国和热爱祖国悠久文化的思想感情,培养学生的民族自豪感和钻研精神。

  四、教学重点难点

  教学重点

  探索和证明勾股定理 ·教学难点

  用拼图的方法证明勾股定理

  五、教学方法

  (学法)“引导探索法”

  (自主探究,合作学习,采用小组合作的方法。

  六、教具准备

  课件、三角板

  七、教学过程设计

  教学环节1

  教学过程:创设情境探索新知 教师活动:出示第24届国际数学家大会的会徽的图案向学生提问

  (1) 你见过这个图案吗?

  (2) 你听说过“勾股定理”吗?

  学生活动:学生思考回答

  设计意图:目的在于从现实生活中提出“赵爽弦图”,进一步激发学生积极主动地投入到探索活动中,同时为探索勾股定理提供背景材料。

  教学环节2 教学过程:实验操作获取新知归纳验证完善新知

  教师活动:出示课件,引导学生探索

  学生活动:猜想实验合作交流画图测量拼图验证

  设计意图:渗透从特殊到一般的数学思想。为学生提供参与数学活动的时间和空间,发挥学生的主体作用;让学生自己动手拼出赵爽弦图,培养他们学习数学的成就感。通过拼图活动,使学生对定理的理解更加深刻,体会数学中的数形结合思想,调动学生思维的积极性,激发学生探求新知的欲望。给学生充分的时间与空间讨论、交流,鼓励学生敢于发表自己的'见解,感受合作的重要性。

  教学环节3 教学过程:解决问题应用新知

  教师活动:出示例题和练习

  学生活动:交流合作,解决问题

  设计意图:通过运用勾股定理对实际问题的解释和应用,培养学生从身边的事物中抽象出几何模型的能力,使学生更加深刻地认识数学的本质:数学来源于生活,并能服务于生活,顺利解决如何将实际问题转化为求直角三角形边长的问题,培养学生的数学应用意识。

  教学环节4 教学内容:课堂小结巩固新知布置作业

  教师活动:引导学生小结

  学生活动:讨论交流、自由发言

  设计意图:既引导学生从面积的角度理解勾股定理,又从能力、情感、态度等方面关注学生对课堂整体感受,在轻松愉快的气氛中体会收获的喜悦。

  通过布置课外作业,给学生留有继续学习的空间和兴趣,及时获知学生对本节课知识的掌握情况,适当的调整教学进度和教学方法,并对学习有困难的学生给与指导。

  八、板书设计

  勾股定理:如果直角三角形的两直角边分别为a和b,斜边为c,那么 a2+b2=c2。

  九、习题拓展

  如图,将长为10米的梯子AC斜靠在墙上,BC长为6米。

  (1)求梯子上端A到墙的底端B的距离AB。

  (2)若梯子下部C向后移动2米到C1点,那么梯子上部A向下移动了多少米?

  十、作业设计

  1。收集有关勾股定理的证明方法, 下节课展示、交流。

  2。做一棵奇妙的勾股树(选做)

人教版初中数学教学设计3

  教学目标

  1.知道什么是全等形、全等三角形及全等三角形的对应元素;

  2.知道全等三角形的性质,能用符号正确地表示两个三角形全等;

  3.能熟练找出两个全等三角形的对应角、对应边.

  教学重点

  全等三角形的性质.

  教学难点

  找全等三角形的对应边、对应角.

  教学过程

  一.提出问题,创设情境

  1、问题:你能发现这两个三角形有什么美妙的关系吗?

  这两个三角形是完全重合的

  2.学生自己动手(同桌两名同学配合)

  取一张纸,将自己事先准备好的三角板按在纸上,画下图形,照图形裁下来,纸样与三角板形状、大小完全一样.

  3.获取概念

  让学生用自己的语言叙述:全等形、全等三角形、对应顶点、对应角、对应边,以及有关的数学符号.

  形状与大小都完全相同的两个图形就是全等形.

  要是把两个图形放在一起,能够完全重合,就可以说明这两个图形的形状、大小相同.

  概括全等形的准确定义:能够完全重合的两个图形叫做全等形.请同学们类推得出全等三角形的概念,并理解对应顶点、对应角、对应边的含义.仔细阅读课本中"全等"符号表示的要求.

  二.导入新课

  将△ABC沿直线BC平移得△DEF;将△ABC沿BC翻折180°得到△DBC;将△ABC旋转180°得△AED.

  议一议:各图中的两个三角形全等吗?

  不难得出:△ABC≌△DEF,△ABC≌△DBC,△ABC≌△AED.

  (注意强调书写时对应顶点字母写在对应的位置上)

  启示:一个图形经过平移、翻折、旋转后,位置变化了,但形状、大小都没有改变,所以平移、翻折、旋转前后的图形全等,这也是我们通过运动的方法寻求全等的一种策略.

  观察与思考:

  寻找甲图中两三角形的对应元素,它们的对应边有什么关系?对应角呢?

  (引导学生从全等三角形可以完全重合出发找等量关系)

  得到全等三角形的'性质:全等三角形的对应边相等.全等三角形的对应角相等.

  [例1]如图,△OCA≌△OBD,C和B,A和D是对应顶点,说出这两个三角形中相等的边和角.

  问题:△OCA≌△OBD,说明这两个三角形可以重合,思考通过怎样变换可以使两三角形重合?

  将△OCA翻折可以使△OCA与△OBD重合.因为C和B、A和D是对应顶点,所以C和B重合,A和D重合.

  ∠C=∠B;∠A=∠D;∠AOC=∠DOB.AC=DB;OA=OD;OC=OB.

  总结:两个全等的三角形经过一定的转换可以重合.一般是平移、翻转、旋转的方法.

  [例2]如图,已知△ABE≌△ACD,∠ADE=∠AED,∠B=∠C,指出其他的对应边和对应角.

  分析:对应边和对应角只能从两个三角形中找,所以需将△ABE和△ACD从复杂的图形中分离出来.

  根据位置元素来找:有相等元素,它们就是对应元素,然后再依据已知的对应元素找出其余的对应元素.常用方法有:

  (1)全等三角形对应角所对的边是对应边;两个对应角所夹的边也是对应边.

  (2)全等三角形对应边所对的角是对应角;两条对应边所夹的角是对应角.

  解:对应角为∠BAE和∠CAD.

  对应边为AB与AC、AE与AD、BE与CD.

  [例3]已知如图△ABC≌△ADE,试找出对应边、对应角.(由学生讨论完成)

  借鉴例2的方法,可以发现∠A=∠A,在两个三角形中∠A的对边分别是BC和DE,所以BC和DE是一组对应边.而AB与AE显然不重合,所以AB与AD是一组对应边,剩下的AC与AE自然是一组对应边了.再根据对应边所对的角是对应角可得∠B与∠D是对应角,∠ACB与∠AED是对应角.所以说对应边为AB与AD、AC与AE、BC与DE.对应角为∠A与∠A、∠B与∠D、∠ACB与∠AED.

  做法二:沿A与BC、DE交点O的连线将△ABC翻折180°后,它正好和△ADE重合.这时就可找到对应边为:AB与AD、AC与AE、BC与DE.对应角为∠A与∠A、∠B与∠D、∠ACB与∠AED.

  三.课堂练习

  课本练习1.

  四.课时小结

  通过本节课学习,我们了解了全等的概念,发现了全等三角形的性质,并且利用性质可以找到两个全等三角形的对应元素.这也是这节课大家要重点掌握的

  找对应元素的常用方法有两种:

  (一)从运动角度看

  1.翻转法:找到中心线,沿中心线翻折后能相互重合,从而发现对应元素.

  2.旋转法:三角形绕某一点旋转一定角度能与另一三角形重合,从而发现对应元素.

  3.平移法:沿某一方向推移使两三角形重合来找对应元素.

  (二)根据位置元素来推理

  1.全等三角形对应角所对的边是对应边;两个对应角所夹的边是对应边.

  2.全等三角形对应边所对的角是对应角;两条对应边所夹的角是对应角.

  五.作业

  课本习题1

  课后作业:《新课堂》

人教版初中数学教学设计4

  在教学过程中,很多教师总认为自己在上课中讲得井井有条,知识条理十分透彻,演算透彻清晰,但结果是有大多数学生不能举一反三,数学学习困难重重。产生这种现象的原因,多数教师都归因于学生素质差、家庭教育环境不良等教师以外的因素,很少发现是自己教学能力和素养导致而成。

  课堂教学是师生的双边活动。课堂教学的实质是师生双方的信息交流,共同学校的过程。教师得知学生在数学学习很困难时,是否想到了可能教师自己对教材理解不够,没有准确地把握教材的重点、难点,对教材内容层次没有理清和教学方法不适呢?《数学课程标准》指导下,我们的数学教学目的是要学生在数学学习中,由“听”到“懂”,再到“会”,最后到“通”。为此,教师必须深刻反思自己的教育教学行为,批判性地考察自我主体行为表现及其行为依据。通过观察、回顾、诊断、自我监控等方式,或给予肯定、支持与强化,或给予否定、思索与修正,将“学会教学”与“学会学习”结合起来,从而努力提升教学实践的合理性,提高课堂教学效能,到达提高教学质量的目的。现就以下几方面谈谈自己的看法。

  一、教师要反思教育观念

  新课标下要求教师要改变学科的教育观,始终体现“学生是教学活动的主体”科学理念,着眼于学生的终身发展,注重培养学生浓厚的学习兴趣和正确的学习习惯。数学非常重视教学内容与实际生活的紧密联系。但是在教学活动中还是有不少教师习惯于传统的教学模式,偏重于知识的传授,强调接受式学习,这样使很多学生在学习数学上失去了兴趣。教学中教师要抓住时机,不断地引导学生在设疑、质疑、解疑的过程中,创设认知“冲突”,激发学生持续的学习兴趣和求知欲望,顺利地建立数学概念,把握数学定义、定理和规律。

  教师在探究教学中要立足与培养学生的独立性和自主性,引导他们质疑、调查和探究,学会在实践中学,在合作中学,逐步形成适合于自己的学习策略。例如,在学习等腰三角形三线合一的性质时可以让三个同学合作分别去画出顶角平分线、底边上的高、底边上的中线,这是学生会发现三条线为什么会是一条线?证明三角形全等的方法有多种,为什么 “角边边”不能判定两三角形全等?在学习镶嵌时,可以提这样的问题,为什么正三角形、正方形、长方形正六边形可以,而正五边形不可以?等等。

  这样教师不断地设问,不断地质疑,就能引导学生进行积极思考,激发起学生浓厚的学习兴趣和求知欲望,促使学生在生活中发现和归纳各种各样的数学规律,为下一步学习数学知识打下坚实的基础。所以我们的教师必须反思自己的教育观念,紧紧抓住主导和主体的关系,解决好学生学习积极性的问题。

  二、教师要反思教学设计

  教学设计是课堂教学的'蓝本,是对课堂教学的整体规划和预设,勾勒出了课堂教学活动的效益取向。设计教学方案时,教师对当前的教学内容及其地位(概念的“解构”、思想方法的“析出”、相关知识的联系方式等),学生已有知识经验,教学目的,重点与难点,如何依据学生已有认知水平和知识的逻辑过程设计教学过程,如何突出重点和突破难点,学生在理解概念和思想方法时可能会出现哪些情况以及如何处理这些情况,设计哪些练习以巩固新知识,如何评价学生的学习效果等,都应该有一定的思考和预设。教学设计的反思就是对这些思考和预设是否考虑到

  了。教学后,要对实际进程和学生的接受程度进行比较和反思,找出成功和不足之处及其原因,从而有效地改进教学。

  三、教师要反思教学方法

  教师教得好,本质上讲是学生学得好。在实际教学过程中我们的教学方法是否合乎学生实际呢?上课、评卷、答疑解难时,有的教师自以为讲清楚明白了,学生受到了一定的启发,但反思后发现,教师的讲解并没有很好地从学生原有的知识基础出发,从根本上解决学生认识上鸿沟问题。有的教师只是一味的设想按照自己某个固定的程序去解决某一类问题,也许学生当时听明白了,但往往是是而非,并没有真正理解问题的本质。

  初中数学教学中,例习题教学是数学教学中重要的组成部分,是概念类教学的延伸和发展。教材中的例习题都是编者精心编制的,具有典型性和启发性,它们不仅是对基础知识的巩固,同时对培养学生智力、掌握数学思想和方法,及培养学生应用数学意识和能力,提高学生的数学素养等都有重要意义。

  四、教师要反思学生学习方法

  《数学课程标准》指出,有效的数学学习活动不能单纯依赖模仿与记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式,因此,转变数学学习方式,倡导有意义的学习方式是课程改革的核心任务。初中学生年龄一般在十二至十六岁之间,正处生长发育期,思想不成熟,行为不稳定,办事情绪化,喜表露,易冲动, 既有面见师长的羞涩, 有初生牛犊不怕虎的习性。在数学学习上凭兴趣,看心情,个性反映较为突出,有不少学生学习方法也存在一定的问题。同时他们往往又很难发现自己的学习方法不妥。所以,教师就应该反思学生的学习方法,找一找哪些问题,并帮助他们努力改变不恰当的方法,使学生达到《新课标》的要求。

  总之,为学之道,必本与思,思则得之,不思则不得。教学也是这个规律,只教不思就会成为教死书的教书匠,学生也得不到很好的受益。要想成为优秀的教师,只有一边教书一边总结,一边教书一边反思,才能实现自己的目的。

人教版初中数学教学设计5

  教育改革的关键在于教师观念的转变,现代教育理论告诉我们:教师的职责现在已经越来越少地传授知识,而是越来越多地鼓励、思考……将越来越成为一位顾问、一位交流意见的参加者、一位帮助发现而不是拿出现成真理的人,必须拿出更多的时间和精力去从事那些有效果的和有创造性的活动:互相影响、讨论、激励、了解、鼓舞。这说明了一个道理:教师的地位发生了根本性的变化,不再仅仅是知识的传授者,还要确定“以人为本”的观念,把课堂教学看作自己也是学生人生中的一段激荡的生命经历,鼓励、激发学生去不断探索,把学生的“发现”与“创造”视为最有价值的劳动成果,教师与学生平等地对话,与他们共同感悟思潮的跌宕涌动。我想从三个方面谈谈自己在教学时的一些认识:

  一、联系生活、感知数学

  “数学课程不仅要考虑数学自身的特点,而且应遵循学生学习数学的心理规律,强调从学生已有的生活经验出发,让学生亲身经历将实际问题抽象成数学模型进行解释与应用的过程。”这就要求我们遵循学生的思维规律,在实际问题和数学模型之间架起一座桥梁,让学生在不知不觉中走进数学、感知数学。数学来源于生活并服务于生活,主体(学生)在思考问题时,既符合自身的认知规律,又有直觉洞察、直观猜想、合理归纳与活动思维过程,有利于提高自己对数学的认识。

  二、身临其境,探索规律

  “数学教学活动必须建立在学生的认识发展水平和已有的知识经验上,教师应激发学生的学习积极性,向学生提供充分从事数学活动的机会。

  在教学时教师应根据知识的内在结构和学生的学习规律,提供现象和问题,创设思维情境,引导学生主动参与,进行观察、思考、探索。这样有利于激发学生解决问题的热情,提升学生的'学习水平。比如在探究一元二次方程的根与系数的关系时,我们可以按下列步骤来创设情境。

  1.求三个一元二次方程的两根之和与两根之积。一般来说学生都是先把方程的根求出来,然后计算,学生可能体会不到什么,此时课堂气氛比较平稳。

  2.求一元二次方程的两根之和与两根之积,这时很多学生会感到很繁,怕动手计算,课堂出现沉闷现象。此时教师立即口答出答案,学生就会感觉到很惊奇,为之一振,进而产生疑问:“老师怎么会看出答案?这里会不会有规律?”课堂出现窃窃私语,激活了学生的思维,活跃了课堂气氛。

  3.提出问题:你能根据你开始的计算和老师的结论观察出一元二次方程的根与系数之间的关系吗?学生们跃跃欲试,开始投入到观察、思考、探索中去。

  4.提出问题:你敢肯定你所猜测到的结论是正确的吗?再一次激发学生的斗志,使他们敢于说理、敢于证明,给予他们充分展示自己才华的机会。

  三、由点到面,触类旁通

  复习不是简单的知识重复,而是一个再认识、再提高的过程,复习中的最大矛盾是时间短、内容多、要求高。复习既要做到突出重点、抓住典型,又能在高度概括中深刻揭示知识的内在联系,让学生在掌握规律中理解、记忆、熟练、提高。比如在复习一元二次方程根的判别式和根与系数的关系时,可以把一元二次方程根的判别式、根与系数的关系和二次函数的有关知识相联系,根的判别式可以作为判别二次函数的图像与x轴的交点个数的依据:当△>0时,抛物线与x轴有两个不同的交点;当△<0时,抛物线与x轴没有交点;当△=0时,抛物线与x轴只有一个交点即顶点。如果抛物线与x轴有两个不同的交点,用根与系数的关系可以求抛物线与x轴的两个交点之间的距离,可以判别抛物线与x轴交点的位置(交点是在坐标原点的左边还是在坐标原点的右边)等等。这样在复习过程中把知识拓一拓、伸一伸,能激起学生思维的火花、学习的积极性,培养学生运用知识提高分析问题和解决问题的能力。

  总之,课堂教学面对的是独立、有个性、有思维的学生,课堂教学设计应适应学生的发展,应随“学情”的变化而变化。课堂教学设计的成效如何,完全取决于教师对教材的理解、对学生情况的了解。只有教师具备“以学生为本”的教学理念,才能一切从学生实际出发、一切为学生考虑,才能真正做到教学服务于学生,实现“不同的人在数学上得到不同的发展”。

人教版初中数学教学设计6

  教材分析

  1.这节的重点为:去括号。因此,本节所学的知识实际上就是对前面所学知识的一个巩固和深化,要突破这个重点,只有在掌握方法的前提下,通过一定的练习来掌握。

  2.去括号是整式加减的一个重要内容,也是下一章一元一次方程的直接基础,也是今后继续学习整式的乘除、因式分解、方程,以及分式、函数等的重要基础。

  学情分析

  1.去括号法则是教材上的教学内容,学生学习时会经常出现错用法则的现象。实验表明:完全可以用乘法分配律取代去括号法则.这是由于:(1)“去括号法则”,增加了记忆负担和出错的机会,容易出错;(2)去括号的法则增加了解题长度,降低了学习效率;(3)用乘法分配律去括号的学习是同化而非顺应,易于理解与掌握;(4)用乘法分配律去括号是回归本质,返璞归真,且既可减少学习时间,又能提高运算的正确率。

  教学目标

  1.熟练掌握去括号时符号的变化规律;

  2.能正确运用去括号进行合并同类项;

  3.理解去括号的依据是乘法分配律。

  教学重点和难点

  重点

  去括号时符号的变化规律。

  难点

  括号外的因数是负数时符号的变化规律。

  教学过程

  一、创设情景问题

  青藏铁路线上,列车在冻土地段的行驶速度是100千米/时,在非冻土地段的形式速度可以达到120千米/时。

  请问:(3)在格尔木到拉萨路段,列车通过冻土地段比通过非冻土地段多用0.5小时,如果通过冻土地段需要t小时,则这段铁路的全长可以怎么样表示?冻土地段与非冻土地段相差多少千米?

  解:这段铁路的全长为100t+120(t-0.5)(千米)

  冻土地段与非冻土地段相差100t-120(t-0.5)(千米)。

  提出问题,如何化简上面的两个式子?引出本节课的`学习内容。

  二、探索新知

  1.回顾:

  1你记得乘法分配率吗?怎么用字母来表示呢?

  a(b+c)=ab+ac

  2-(-2)=(-1)*(-2)=2+(-3)=(+1)*(-3)=-3

  2.探究

  计算(试着把括号去掉)

  (1)13+(7-5)(2)13-(7-5)

  类比数的运算,去掉下面式子的括号

  (3)a+(b-c)(4)a-(b-c)

  3.解决问题

  100t+120(t-0.5)=100t-120(t-0.5)=

  思考:

  去掉括号前,括号内有几项、是什么符号?去括号后呢?

  去括号的依据是什么?

  三、知识点归纳

  去括号法则:

  如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;

  如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反.

  注意事项

  (1)去括号规律要准确理解,去括号应对括号的每一项的符号都予考虑,做到要变都变;要不变,则谁也不变;

  (2)括号内原有几项去掉括号后仍有几项.

  四、例题精讲

  例4化简下列各式:

  (1)8a+2b+(5a-b);(2)(5a-3b)-3(a2-2b).

  五、巩固练习

  课本P68练习第一题.

  六、课堂小结

  1.今天你收获了什么?

  2.你觉得去括号时,应特别注意什么?

  七、布置作业

  课本P71习题2.2第2题

人教版初中数学教学设计7

  一、学情分析

  学生通过上节课的学习,已经掌握了如何用没有刻度的直尺和圆规作一条线段等于已知线段。同时在学习中学生已经初步理解了作图的步骤,具备了基本的作图能力,并能简单的表达作图过程,为本节课的学习奠定了良好的知识基础。同时在以前的数学学习中学生已经经历了很多合作学习的过程,具有了一定的合作学习的`经验,具备了一定的合作与交流的能力。

  二、教学目标分析

  教科书基于学生在上节课学习了如何作一条线段等于已知线段,并积累了一定的活动经验,提出本节课的主要教学任务是:会用尺规作一个角等于已知角,并了解它在尺规作图中的简单应用。为此,本节课的教学目标是:

  1、能按照作图语言来完成作图动作,能用尺规作一个角等于已知角,并了解它在尺规作图中的简单应用。

  2、能利用尺规作角的和、差、倍。

  3、能够通过尺规设计并绘制简单的图案。

  4、在尺规作图过程当中,积累数学活动经验,培养动手能力和逻辑分析能力。

  三、教学设计分析

  1、回顾与思考

  活动内容:

  (1)怎样利用没有刻度的直尺和圆规作一条线段等于已知线段?

  (2)练习:已知线段a,b,c,作一条线段m,使得m=a+b—c

  活动目的:

  通过回顾上节课学习的用尺规作线段,既达到了复习巩固,反馈落实的目的,同时熟练尺规的使用,积累活动经验,也为后面学习用尺规作角起到了铺垫的作用。

  2、情境引入,探索发现

  活动内容:如图2

人教版初中数学教学设计8

  一、教学目标:

  1.理解二元一次方程及二元一次方程的解的概念;

  2.学会求出某二元一次方程的几个解和检验某对数值是否为二元一次方程的解;

  3.学会把二元一次方程中的一个未知数用另一个未知数的一次式来表示;

  4.在解决问题的过程中,渗透类比的思想方法,并渗透德育教育.

  二、教学重点、难点:

  重点:二元一次方程的意义及二元一次方程的解的概念.

  难点:把一个二元一次方程变形成用关于一个未知数的代数式表示另一个未知数的形式,其实质是解一个含有字母系数的方程.

  三、教学方法与教学手段:

  通过与一元一次方程的比较,加强学生的类比的思想方法; 通过“合作学习”,使学生认识数学是根据实际的需要而产生发展的观点.

  四、教学过程:

  1.情景导入:

  新闻链接:桐乡70岁以上老人可领取生活补助,

  得到方程:80a+150b=902 880.

  2.新课教学:

  引导学生观察方程80a+150b=902 880与一元一次方程有异同?

  得出二元一次方程的概念:含有两个未知数,并且所含未知数的项的次数都是1次的方程叫做二元一次方程.

  做一做:

  (1)根据题意列出方程:

  ①小明去看望奶奶,买了5 kg苹果和3 kg梨共花去23元,分别求苹果和梨的单价.设苹果的单价x元/kg , 梨的单价y元/kg ;

  ②在高速公路上,一辆轿车行驶2时的路程比一辆卡车行驶3时的路程还多20千米,如果设轿车的速度是a千米/小时,卡车的速度是b千米/小时,可得方程: .

  (2)课本P80练习2. 判定哪些式子是二元一次方程方程.

  合作学习:

  活动背景爱心满人间——记求是中学“学雷锋、关爱老人”志愿者活动.

  问题:参加活动的36名志愿者,分为劳动组和文艺组,其中劳动组每组3人,文艺组每组6人.

  团支书拟安排8个劳动组,2个文艺组,单从人数上考虑,此方案是否可行? 为什么? 把x=8,y=2代入二元一次方程3x+6y=36,看看左右两边有没有相等? 由学生检验得出代入方程后,能使方程两边相等. 得出二元一次方程的解的概念:使二元一次方程两边的值相等的一对未知数的值叫做二元一次方程的一个解.

  并提出注意二元一次方程解的书写方法.

  3.合作学习:

  给定方程x+2y=8,男同学给出y(x取绝对值小于10的整数)的值,女同学马上给出对应的x的`值; 接下来男女同学互换.(比一比哪位同学反应快)请算的最快最准确的同学讲他的计算方法.提问:给出x的值,计算y的值时,y的系数为多少时,计算y最为简便?

  出示例题:已知二元一次方程 x+2y=8.

  (1)用关于y的代数式表示x;

  (2)用关于x的代数式表示y;

  (3)求当x= 2,0,-3时,对应的y的值,并写出方程x+2y=8的三个解.

  (当用含x的一次式来表示y后,再请同学做游戏,让同学体会一下计算的速度是否要快)

  4.课堂练习:

  (1)已知:5xm-2yn=4是二元一次方程,则m+n=;

  (2)二元一次方程2x-y=3中,方程可变形为y= 当x=2时,y= ;

  5.你能解决吗?

  小红到邮局给远在农村的爷爷寄挂号信,需要邮资3元8角.小红有票额为6角和8角的邮票若干张,问各需要多少张这两种面额的邮票?说说你的方案.

  6.课堂小结:

  (1)二元一次方程的意义及二元一次方程的解的概念(注意书写格式);

  (2)二元一次方程解的不定性和相关性;

  (3)会把二元一次方程化为用一个未知数的代数式表示另一个未知数的形式.

  7.布置作业(1)教材P82; (2)作业本.

  教学设计意图:

  依照课程标准,通过分析教材中教学情境设计和例习题安排的意图,在此基础上依据学生实际,制订了本堂课的教学目标,教学重点和难点,课堂教学的设计始终围绕这教学重点和难点展开.

  在充分理解教材编写意图、教学要求和教学理念的基础上,根据学生实际,从学生的已有经验出发,创设了教学情境:关心老人,突出情感主线,并贯穿整个教学. 并对教学

  内容进行适当的重组、补充和加工等,创造性地使用了教材. 所选择的例习题都体现实际问题数学化的思想,让学生感受到数学的魅力. 这两个方面的设计贯穿整堂课,把知识内容和情感体验自然连贯起来.

  其次,在教学过程设计中,体现了让学生展示解决问题的思维过程,通过几个合作学习,激发学生主动去接触问题,从而达到解决问题的目的. 重视学生学习过程中的自我评价和生生间的相互评价,关注学生对解题思路回顾能力的培养.

  二元一次方程概念的教学中,通过与一元一次方程的类比的方法,使得学生加深印象. 在突破难点的设计上,通过游戏的形式激发学生的学习兴趣,并在选题时,通过降低例题的难度,使学生迅速掌握用关于一个未知数的代数式表示另一个字母的方法,体会运用这种方法的可使求二元一次方程求解更简便.

人教版初中数学教学设计9

  课型:新授课

  学习目标:

  1.能根据具体问题中的数量关系列出一元二次方程并利用它解决具体问题.

  2.学会运用数学知识分析解决实际问题,体会数学的价值。

  重点:列一元二次方程解应用题

  难点:学会分析问题中的等量关系

  一、知识回顾

  列方程解应用题的一般步骤是①②③④⑤⑥

  二、自学教材、合作探究

  1、自学教材45页,学习分析“探究一”中的数量关系

  设每轮传染中平均一个人传染了x个人。开始有一人患了流感,第一轮的传染源就是这个人,他传染了x个人,那么,用代数式表示,第一轮后共有( )人患了流感;第二轮传染中,这些人中的.每个人又传染了x个人,用代数式表示,第二轮后共有( )人患了流感。则可列方程为:

  2、解这个方程,得

  3、想一想:三轮传染后有多少人患流感?四轮呢?

  三、检查自学效果

  1.(xxxx年毕节地区)有一人患了流感,经过两轮传染后共有100人患了流感,那么每轮传染中,平均一个人传染的人数为( )

  A.8人B.9人C.10人D.11人

  2.生物兴趣小组的学生,将自己收集的标本向本组其他成员各赠送一件;全组共互赠了182件.如果全组有x名学生,则根据题意列出的方程是( )

  A. B. C. D.

  四、指导学生应用

  某种电脑病毒传播非常快,如果一台电脑被感染,经过两轮感染后就会有81台电脑被感染.请你用学过的知识分析,每轮感染中平均一台电脑会感染几台电脑?若病毒得不到有效控制,3轮感染后,被感染的电脑会不会超过700台?(xxxx广东中考9分)

  解:设每轮感染中平均每一台电脑会感染台电脑,1分

  4分

  解之得6分

  8分

  答:每轮平均每一台电脑会感染台电脑,3轮感染后,被感染的电脑超过700台。

  五、巩固训练:

  1.一个多边形的对角线有9条,则这个多边形的边数是( ).

  A.6 B.7 C.8 D.9

  2.元旦期间,一个小组有若干人,新年互送贺卡一张,已知全组共送贺卡132张,则这个小组共有( )人

  A.11 B.12 C.13 D.14

  3.九年级(3)班文学小组在举行的图书共享仪式上互赠图书,每个同学都把自己的图书向本组其他成员赠送一本,全组共互赠了240本图书,如果设全组共有x名同学,依题意,可列出的方程是( )

  A.x(x+1)=240 B.x(x-1)=240

  C.2x(x+1)=240 D.x(x+1)=240

  4.参加中秋晚会的每两个人都握了一次手,所有人共握手10次,则有( )人参加聚会。

  5.学校组织了一次篮球单循环比赛,共进行了15场比赛,那么有个球队参加了这次比赛。

  6.甲型H1N1流感病毒的传染性极强,某地因1人患了甲型H1N1流感没有及时隔离治疗,经过两天传染后共有9人患了甲型H1N1流感,每天传染中平均一个人传染了几个人?如果按照这个传染速度,再经过5天的传染后,这个地区一共将会有多少人患甲型H1N1流感?

  反思:2题和4题列方程时为何不一样呢?

  六、归纳小结:

  1.本节课我们学习了列一元一次方程解应用题,要注意解题步骤,特别地,要检验解的结果是否正确与符合题意,并注意题型的积累。

  2.(方法归纳)解应用题地步骤是:审、设、列、解、检、答,关键是寻找等量关系,可以采用列式法,线段图示法,列表法等来帮助寻找,并注重检验。

  七、效果测评:

  1.解下列方程。(1)+10x+21=0(2)-x=1

  2.两个相邻的偶数的积是240,求这两个偶数。

  3.参加一次足球联赛的每两个队之间都进行两场比赛,共要比赛90场,共有多少个队参加比赛?

人教版初中数学教学设计10

  一、教学设计:

  1 学习方式:

  对于全等三角形的研究,实际是平面几何中对封闭的两个图形关系研究的第一步。它是两个三角形间最简单,最常见的关系。它不仅是学习后面知识的基础,并且是证明线段相等、角相等以及两线互相垂直、平行的重要依据。因此必须熟练地掌握全等三角形的判定方法,并且灵活的应用。为了使学生更好地掌握这一部分内容,遵循启发式教学原则,用设问形式创设问题情景,设计一系列实践活动,引导学生操作、观察、探索、交流、发现、思维,使学生经历从现实世界抽象出几何模型和运用所学内容,解决实际问题的过程,真正把学生放到主体位置。

  2 学习任务分析:

  充分利用教科书提供的素材和活动,鼓励学生经历观察、操作、推理、想象等活动,发展学生的空间观念,体会分析问题、解决问题的方法,积累数学活动经验。培养学生有条理的思考,表达和交流的能力,并且在以直观操作的基础上,将直观与简单推理相结合,注意学生推理意识的建立和对推理过程的理解,能运用自己的方式有条理的表达推理过程,为以后的证明打下基础。

  3 学生的认知起点分析:

  学生通过前面的学习已了解了图形的全等的概念及特征,掌握了全等图形的对应边、对应角的关系,这为探究三角形全等的条件做好了知识上的准备。另外,学生也具备了利用已知条件作三角形的基本作图能力,这使学生能主动参与本节课的操作、探究成为可能。

  4 教学目标:

  (1) 学生在教师引导下,积极主动地经历探索三角形全等的条件的过程,体会利用操作、归纳获得数学结论的过程。

  (2) 掌握三角形全等的“边边边”、“边角边”、“角边角”、“角角边”的判定方法,了解三角形的稳定性,能用三角形的全等解决一些实际问题。

  (3) 培养学生的'空间观念,推理能力,发展有条理地表达能力,积累数学活动经验。

  5 教学的重点与难点:

  重点:三角形全等条件的探索过程是本节课的重点。从设置情景提出问题,到动手操作,交流,直至归纳得出结论,整个过程学生不仅得到了两个三角形全等的条件,更重要得是经历了知识的形成过程,体会了一种分析问题的方法,积累了数学活动经验,这将有利于学生更好的理解数学,应用数学。难点:三角形全等条件的探索过程,特别是创设出问题后,学生面对开放性问题,要做出全面、正确得分析,并对各种情况进行讨论,对初一学生有一定的难度。

  根据初一学生年龄、生理及心理特征,还不具备独立系统地推理论证几何问题的能力,思维受到一定的局限,考虑问题不够全面,因此要充分发挥教师的主导作用,适时点拨、引导,尽可能调动所有学生的积极性、主动性参与到合作探讨中来,使学生在与他人的合作交流中获取新知,并使个性思维得以发展。

  6 教学过程

  教学步骤

  教师活动

  学生活动

  教学媒体(资源)和教学方式

  复习过渡

  引入新知

  创设情景

  提出问题

  建立模型

  探索发现

  归纳总结

  得出新知巩固运用

  及其推广

  反思小结

  提炼规律

  电脑显示,带领学生复习全等三角定义及其性质。

  电脑显示,小明画了一个三角形,怎样才能画一个三角形与他的三角形全等?我们知道全等三角形三条边

  分别对应相等,三个角分别对应相等,那麽,反之这六个元素分别对应,这样的两个三角形一定全等.但是,是否一定需要六个条件呢?条件能否尽可能少吗?

  对学生分类中出现的问题,予以纠正,对学生提出的解决问题的不同策略,要给予肯定和鼓励,以满足多样化的学生需要,发展学生个性思维。

人教版初中数学教学设计11

  ★目标预设

  一、知识与能力

  借助生活中的实例会判断一个数是正数还是负数,能用正负数表示具有相反意义的量

  二、过程与方法

  1、过程:通过实例引入负数,从而指导学生会识别正负数及其表示法,能应用正负数表示具有相反意义的量。

  2、方法:讨论法、探究法、讲授法、观察法。

  三、情感、态度、价值观

  乐于接触社会环境中的数学信息,愿意谈论数学话题,在数学活动中发挥积极作用

  ★教学重难点

  一、重点:理解正数和负数的概念,判断一个数是正数还是负数,应用正负数表示具有相反意义的量

  二、难点:负数的意义,理解具有相反意义的量。

  ★教学准备

  带有负数的实例若干

  ★预习导学

   在生活、生产、科研中,经常遇到数的表示与数的运算的问题。例如,

  ⑴天气预报20xx年11月某天北京的温度为-3~3℃,它的确切含义是什么?这一天北京的温差是多少?

  ⑵有三个队参加的足球比赛中,红队胜黄队(4∶1),黄队胜蓝队(1∶0),蓝队胜红队(1∶0),如何确定三个队的净胜球数与排名顺序?

  ⑶某机器零件的长度设计为100mm,加工图纸标注的尺寸为100±0.5(mm),这里的±0.5代表什么意思?合格产品的长度范围是多少?(问题1-3友情提示、全班交流、教师点评)

  ★教学过程

  一、创设情景,谈话引入

  在小学里我们已经学过哪些类型的数(自然数和分数),它们都是由实际需要而产生的,由记数、排序产生数1,2,3……,由表示“没有”“空位”,产生数0,由分物、测量产生分数 , ,……,但在预习导学中表示温度、净胜球数、加工允许误差时用到数

  -3,3,2,-2,0,+0.5,-0.5。

  二、精讲点拨,质疑问难

  这里出现了一种新数:-3,-2,-0.5。在前面的实际问题中它们分别表示:零下3摄氏度,净输2球,小于设计尺寸0.5mm,像-3,-2,-0.5这样的数(即在以前学过的0以外的数前面加上负号“-”的数)叫做负数。而3,2,+0.5在问题中分别表示零上3摄氏度,净胜2球,大于设计尺寸0.5mm,它们与负数具有相反的意义。我们把这样的数(即以前学过的'0以外的数)叫做正数

  数字前的“+”,“-”分别读“正”,“负”。

  正数前的“+”可加也可省略。

  数0既不是正数,也不是负数。

  把0以外的数分成正数和负数,表示具有相反意义的量。

  三、课堂活动,强化训练

  小组讨论:生活中你们见过带“-”的数吗?(代表发言,教师适当表扬学生)

  例1:下面哪些数是正数,哪些是负数。(学生独立思考,个别回答,教师点评)

  -11,4.8,+73,-2.7, ,- ,-8.12,100

  例2:在知识竞赛中,如果用+10分表示加10分,那么扣20分怎样表示?(个别回答,学生点评)

  练习:见书本P5练习(学生独立完成,教师巡视,个别指导)

  四、延伸拓展,巩固内化

  例3:(1)一个月内,小明体重增加2千克,小华体重减少一千克,小强体重没变化,写出他们这个月的体重增长值(减少值呢)?(小组讨论,代表发言,教师点评)

  (2)20xx年下列国家的商品进出口总额比上年的变化情况是:

   美国减少6.4%,德国增长1.3%

   法国减少2.4%,英国减少3.5%

   意大利增长0.2%, 中国增长7.5%

  写出这些国家20xx年商品进出口总额的增长率。(学生独立思考,教师点评)

  (3)一潜水艇所在高度为-50米,一条鲨鱼在潜水艇上方10米处,鲨鱼所在的高度是多少?

  (4)向北走-20米所表示的意思是什么?

  (5)某银行职员在一天内经办了五笔业务:取出10000元,存进25000元,取出5000元,存进8000元。求该职员在一天内使银行变化了多少元?

  (6)在一次数学竞赛中,成绩在120分以上为优秀120分到119分为合格,100分以下的不合格。老师将他班上的十位竞赛成绩简记为:-10、-5、0、-28、+10、20、-3、+15、+8、-23,则这十位同学中优秀的有几名?

  (7)判断下列各题:

  ①正数就是自然数

  ②既不是正数也不是负数的数不存在

  ③带正号的数为正数带负号的数为负数

  ④零是最小的整数

  ⑤-a是负数

  练习:见书本P6(独立完成,教师巡视,适时指导,得出结论)

  五、布置作业,当堂反馈

  见书本P7 《当堂反馈》

人教版初中数学教学设计12

  教材分析:

  一元二次方程根与系数的关系的知识内容主要是以前一单元中的求根公式为基础的。教材通过一元二次方程ax2+bx+c=0(a≠0)的根x1、x2得出一元二次方程根与系数的关系,以及以数x1、x2为根的一元二次方程的求方程模型。然后通过4个例题介绍了利用根与系数的关系简化一些计算的知识。

  学情分析:

  1.学生已学习用求根公式法解一元二次方程。

  2.本课的教学对象是九年级学生,学生对事物的认

  识多是直观、形象的,他们所注意的多是事物外部的、直接的、具体形象的特征。

  3.在教学初始,出示一些学生所熟悉和感兴趣的东西,结合一元二次方程求根公式使他们在现代化的教学模式和传统的教学模式相结合的基础上掌握一元二次方程根与系数的关系。

  教学目标:

  1、知识目标:要求学生在理解的基础上掌握一元二次方程根与系数的关系式,能运用根与系数的关系由已知一元二次方程的一个根求出另一个根与未知数,会求一元二次方程两个根的倒数和与平方数,两根之差。

  2、能力目标:通过韦达定理的教学过程,使学生经历观察、实验、猜想、证明等数学活动过程,发展推理能力,能有条理地、清晰地阐述自己的观点,进一步培养学生的创新意识和创新精神。

  3、情感目标:通过情境教学过程,激发学生的求知欲望,培养学生积极学习数学的态度。体验数学活动中充满着探索与创造,体验数学活动中的成功感,建立自信心。

  教学重难点:

  1、重点:一元二次方程根与系数的关系。

  2、难点:让学生从具体方程的根发现一元二次方程根与系数之间的关系,并用语言表述,以及由一个已知方程求作新方程,使新方程的根与已知的方程的根有某种关系,比较抽象,学生真正掌握有一定的难度,是教学的难点。

  教学过程:

  板书设计:

  一元二次方程根与系数的关系如果ax+bx+c=0(a≠0)的两根是x1,x2,那么x1+x2= ,x1x2= 。

  问题6.在方程ax+bx+c=0(a≠0)中,a、b、c的作用吗? ①二次项系数a是否为零,决定着方程是否为二次方程; ②当a≠0时,b=0,a、c异号,方程两根互为相反数; ③当a≠0时,△=b-4ac可判定根的情况; ④当a≠0,b-4ac≥0时,x1+x2=,x1x2=。⑤当a≠0,c=0时,方程必有一根为0。

  学生学习活动评价设计:

  本节课充分让学生分析、观察、提高了学生的归纳能力及推理论证的能力。

  教学反思:

  1.一元二次方程根与系数的关系的推导是在求根公式的基础上进行。它深化了两根的和与积同系数之间的`关系,是我们今后继续研究一元二次方程根的情况的主要工具,必须熟记,为进一步使用打下基础。

  2.以一元二次方程根与系数的关系的探索与推导,向学生展示认识事物的一般规律,提倡积极思维,勇于探索的精神,借此锻炼学生分析、观察、归纳的能力及推理论证的能力

  3.一元二次方程的根与系数的关系,在中考中多以填空,选择,解答题的形式出现,考查的频率较高,也常与几何、二次函数等问题结合考查,是考试的热点,它是方程理论的重要组成部分。

  4.使学生体会解题方法的多样性,开阔解题思路,优化解题方法,增强择优能力。力求让学生在自主探索和合作交流的过程中进行学习,获得数学活动经验,教师应注意引导。

人教版初中数学教学设计13

  一、内容简介

  本节课的主题:通过一系列的探究活动,引导学生从计算结果中总结出完全平方公式的两种形式。

  关键信息:

  1、以教材作为出发点,依据《数学课程标准》,引导学生体会、参与科学探究过程。首先提出等号左边的两个相乘的多项式和等号右边得出的三项有什么关系。通过学生自主、独立的发现问题,对可能的答案做出假设与猜想,并通过多次的检验,得出正确的结论。学生通过收集和处理信息、表达与交流等活动,获得知识、技能、方法、态度特别是创新精神和实践能力等方面的发展。

  2、用标准的数学语言得出结论,使学生感受科学的严谨,启迪学习态度和方法。

  二、学习者分析:

  1、在学习本课之前应具备的基本知识和技能:

  ①同类项的定义。

  ②合并同类项法则

  ③多项式乘以多项式法则。

  2、学习者对即将学习的内容已经具备的水平: 在学习完全平方公式之前,学生已经能够整理出公式的右边形式。这节课的目的就是让学生从等号的左边形式和右边形式之间的关系,总结出公式的应用方法。

  三、教学/学习目标及其对应的课程标准:

  (一)教学目标:

  1、经历探索完全平方公式的过程,进一步发展符号感和推力能力。

  2、会推导完全平方公式,并能运用公式进行简单的计算。

  (二)知识与技能:经历从具体情境中抽象出符号的过程,认识有理数、实数、代数式、方程、不等式、函数;掌握必要的运算,(包括估算)技能;探索具体问题中的数量关系和变化规律,并能运用代数式、方程、不等式、函数等进行描述。

  (三)解决问题:能结合具体情景发现并提出数学问题;尝试从不同角度寻求解决问题的方法,并能有效地解决问题,尝试评价不同方法之间的差异;通过对解决问题过程的反思,获得解决问题的经验。

  (四)情感与态度:敢于面对数学活动中的困难,并有独立克服困难和运用知识解决问题的成功体验,有学好数学的自信心;并尊重与理解他人的见解,能从交流中获益。

  四、教育理念和教学方式:

  1.教师是学生学习的组织者、促进者、合作者,学生是学习的主人,在教师指导下主动的、富有个性的学习,用自己的身体去亲自经历,用自己的心灵去亲自感悟。教学是师生交往、积极互动、共同发展的过程。当学生迷路的时候,教师不轻易告诉方向,而是引导他怎样去辨明方向;当学生登山畏惧了的时候,教师不是拖着他走,而是唤起他内在的精神动力,鼓励他不断向上攀登。

  2.采用“问题情景—探究交流—得出结论—强化训练”的模式展开教学。

  3.教学评价方式:

  (1)通过课堂观察,关注学生在观察、总结、训练等活动中的主动参与程度与合作交流意识,及时给与鼓励、强化、指导和矫正。

  (2)通过判断和举例,给学生更多机会,在自然放松的状态下,揭示思维过程和反馈知识与技能的掌握情况,使老师可以及时诊断学情,调查教学。

  (3)通过课后访谈和作业分析,及时查漏补缺,确保达到预期的'教学效果。

  五、教学媒体:

  多媒体

  六、教学和活动过程:

  〈一〉、提出问题

  [引入] 同学们,前面我们学习了多项式乘多项式法则和合并同类项法则,通过运算下列四个小题,你能总结出结果与多项式中两个单项式的关系吗? (2m+3n)2=_______________,(-2m-3n)2=______________, (2m-3n)2=_______________,(-2m+3n)2=_______________。 〈二〉、分析问题

  1.[学生回答] 分组交流、讨论

  (2m+3n)2= 4m2+12mn+9n2,(-2m-3n)2= 4m2+12mn+9n2, (2m-3n)2= 4m2-12mn+9n2, (-2m+3n)2= 4m2-12mn+9n2。 (1)原式的特点。 (2)结果的项数特点。

  (3)三项系数的特点(特别是符号的特点)。 (4)三项与原多项式中两个单项式的关系。 2.[学生回答] 总结完全平方公式的语言描述:

  两数和的平方,等于它们平方的和,加上它们乘积的两倍; 两数差的平方,等于它们平方的和,减去它们乘积的两倍。 3.[学生回答] 完全平方公式的数学表达式:

  (a+b)2=a2+2ab+b2; (a-b)2=a2-2ab+b2.

  〈三〉、运用公式,解决问题 1.口答:(抢答形式,活跃课堂气氛,激发学生的学习积极性)

  (m+n)2=____________, (m-n)2=_______________,

  (-m+n)2=____________, (-m-n)2=______________,

  (a+3)2=______________, (-c+5)2=______________,

  (-7-a)2=______________, (0.5-a)2=______________.

  2.判断:

  ()① (a-2b)2= a2-2ab+b2 ()

  ② (2m+n)2= 2m2+4mn+n2 ()

  ③ (-n-3m)2= n2-6mn+9m2 ()

  ④ (5a+0.2b)2= 25a2+5ab+0.4b2 ()

  ⑤ (5a-0.2b)2= 5a2-5ab+0.04b2 ()

  ⑥ (-a-2b)2=(a+2b)2 ()

  ⑦ (2a-4b)2=(4a-2b)2 ()

  ⑧ (-5m+n)2=(-n+5m)2

  3.小试牛刀

  ① (x+y)2 =______________;

  ② (-y-x)2 =_______________;

  ③ (2x+3)2 =_____________;

  ④ (3a-2)2 =_______________;

  ⑤ (2x+3y)2 =____________;

  ⑥ (4x-5y)2 =______________;

  ⑦ (0.5m+n)2 =___________;

  ⑧ (a-0.6b)2 =_____________.

  〈四〉、学生小结

  你认为完全平方公式在应用过程中,需要注意那些问题?

  (1) 公式右边共有3项。

  (2) 两个平方项符号永远为正。

  (3)中间项的符号由等号左边的两项符号是否相同决定。

  (4)中间项是等号左边两项乘积的2倍。

  〈五〉、冒险岛:

  (1)(-3a+2b)2=________________________________

  (2)(-7-2m) 2 =__________________________________

  (3)(-0.5m+2n) 2=_______________________________

  (4)(3/5a-1/2b) 2=________________________________

  (5)(mn+3) 2=__________________________________

  (6)(a2b-0.2) 2=_________________________________

  (7)(2xy2-3x2y) 2=_______________________________

  (8)(2n3-3m3) 2=________________________________

  〈六〉、学生自我评价

  [小结] 通过本节课的学习,你有什么收获和感悟?

  本节课,我们自己通过计算、分析结果,总结出了完全平方公式。在知识探索的过程中,同学们积极思考,大胆探索,团结协作共同取得了进步。

  〈七〉[作业]

  p34 随堂练习

  p36 习题

  七、课后反思

  本节课虽然算不上课本中的难点,但在整式一章中是个重点。它是多项式乘法特殊形式下的一种简便运算。学生需要熟练掌握公式两种形式的使用方法,以提高运算速度。授课过程中,应注重让学生总结公式等号两边的特点,让学生用语言表达公式的内容,由于语言缺陷的原因,这一点对聋生来说比较困难,让学生说明运用公式过程中容易出现的问题和特别注意的细节。然后再通过逐层深入的练习,巩固完全平方公式两种形式的应用,为完全平方公式第二节课的实际应用和提高应用做好充分的准备。

  1 . 教学内容精心组织,容量恰当,重点突出,体现内容的有效性、系统性和有序性;

  2 . 重视启发,活跃思维,方式、方法多样,选择适当;教学环节紧凑、合理;

  3 . 教学媒体使用适时、适量、适度、有效。

  4 . 教学结构组合优化,优质高效。

人教版初中数学教学设计14

  (一)创设情境导入新课

  不利用工具,请你将一张用纸片做的角分成两个相等的角。你有什么办法?

  如果前面活动中的纸片换成木板、钢板等没法折的角,又该怎么办呢?

  设计目的:能聚拢学生的思维为新课的开展创造了良好的教学氛围。

  (二)合作交流探究新知

  (活动一)探究角平分仪的原理。具体过程如下:

  播放美访问我国的录像资料------引出雨伞-----观察它的截面图,使学生认清其中的边角关系-----引出角平分线;并且运用几何画板对伞的开合进行动态演示,让学生直观感受伞面形成的角与主杆的关系-----让学生设计制作角平分仪;并利用以前所学的知识寻找理论上的依据,说明这个仪器的制作原理。

  设计目的:用生活中的实例感知。以最近大事作引入点,以最常见的事物为载体,让学生感受到生活中处处都有数学,认识到数学的价值。其中设计制作角平分仪,可培养学生的创造力和成就感以及学习数学的兴趣。使学生很轻松的完成活动二。

  (活动二)通过上述探究,能否总结出尺规作已知角的平分线的一般方法.自己动手做做看.然后与同伴交流操作心得.

  分小组完成这项活动,教师可参与到学生活动中,及时发现问题,给予启发和指导,使讲评更具有针对性。

  讨论结果展示:教师根据学生的叙述,利用多媒体课件演示作已知角的平分线的方法:

  已知:∠AO B.

  求作:∠AOB的平分线.

  作法:

  (1)以O为圆心,适当长为半径作弧,分别交OA、OB于M、N.

  (2)分别以M、N为圆心,大于1/2MN的长为半径作弧.两弧在∠AOB内部交于点C.

  (3)作射线OC,射线OC即为所求.

  设计目的:使学生能更直观地理解画法,提高学习数学的兴趣。

  议一议:

  1.在上面作法的第二步中,去掉“大于MN的长”这个条件行吗?

  2.第二步中所作的两弧交点一定在∠AOB的内部吗?

  设计这两个问题的目的`在于加深对角的平分线的作法的理解,培养数学严密性的良好学习习惯。

  学生讨论结果总结:

  1.去掉“大于MN的长”这个条件,所作的两弧可能没有交点,所以就找不到角的平分线.

  2.若分别以M、N为圆心,大于MN的长为半径画两弧,两弧的交点可能在∠AOB的内部,也可能在∠AOB的外部,而我们要找的是∠AOB内部的交点,否则两弧交点与顶点连线得到的射线就不是∠AOB的平分线了.

  3.角的平分线是一条射线.它不是线段,也不是直线,所以第二步中的两个限制缺一不可.

  4.这种作法的可行性可以通过全等三角形来证明.

  (活动三)探究角平分线的性质

  思考:已知一角及其角平分线添加辅助线构成全等三角形;构成全等的直角三角形。这样的三角形有多少对?

  这样设计的目的是加深对全等的认识。

人教版初中数学教学设计15

  我在这次国培中学习了“初中数学概念课堂教学设计”。虽只有短短的时间,却让我受益匪浅。

  数学概念是数学命题、数学推理的基础,数学学习的真正开始是从对数学概念的学习开始的,作为一名初中数学老师,我也常常在思考,如何进行概念教学?如何充分利用有限的45分钟,让学生真正理解概念?通过这次国培,给我们今后的数学概念教学提供了一种可以借鉴的.教学模式:即“创设问题情景,归纳共同特征——建立数学模型,抽象出概念——在交流中深化概念,辨析概念的内涵与外延——巩固、应用与拓展。”概念教学注意以下几点:

  1、注重了数学与生活之间的联系。

  《数学课程标准》要求:“让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程。”数学的每一个概念都是一个数学模型,老师们从学生实际出发,创设了许多有利于学生学习的现实背景与材料,极大的鼓起了学生学习数学的兴趣。

  2、概念的得出注重了探究过程、分析过程,体现了活动主题。

  通过一组实例,分析共性,找共同特征。

  3、铺垫导入恰当,让预设与生成合情合理。

  课堂教学的优秀与否,既要看预设,又要看生成。做到了新知不新,新概念是在旧概念的基础上滋生和发展出来的,她们这样的引入,符合学生的最近发展区需要,教师适时搭建了一个新旧知识的桥梁,然后引导学生分析、观察,学生就会印象深刻。

  4、注重了数学陷阱的设置。

  把学生对概念理解中的易错点、易混淆点列出来,让学生判断、研究可以让学生对概念理解更深刻。

  5、注重了学科间的渗透。

  在数学教学中,如何使学生形成数学概念,正确的理解和掌握概念是极为重要的,这是学好数学的基础之一。要让学生真正理解概念,要把握好以下三点:一要注重联系生活原型,对概念作通俗解释,体验探究数学问题的乐趣;二要注重揭示概念的本质,准确理解概念的内涵与外延;三要注重概念的实际应用,实现知识的升华。

【初中数学教学设计】相关文章:

初中数学教学设计11-08

关于初中数学教学设计11-01

初中数学教学设计大全07-23

初中数学教学设计模板08-07

初中数学优质教学设计11-24

初中数学教学设计15篇05-13

数学教学设计06-20

数学教学设计:扇形11-11

《趣味数学》教学设计08-23