分数教学设计

时间:2024-04-13 10:00:31 教学设计 我要投稿

分数教学设计

  作为一名教师,可能需要进行教学设计编写工作,教学设计把教学各要素看成一个系统,分析教学问题和需求,确立解决的程序纲要,使教学效果最优化。怎样写教学设计才更能起到其作用呢?下面是小编帮大家整理的分数教学设计,希望对大家有所帮助。

分数教学设计

分数教学设计1

  本课是在学习了分数除以整数和整数除以分数的基础上进行的,学生已经初步感受到一个数除以另一个数时要变除为乘,去乘除数的倒数。本课则是进一步丰富分数除法的内涵,扩展到分数除以分数,并由此统一分数除法的法则。教材意图让学生利用知识的迁移得出分数除以分数的计算方法,并用一些直观的手段来验证此思路是正确的。练习中,还安排了一些旨在探讨分数除法中的规律(当除数大于1、小于1或等于1时,商相应地小于、大于或等于被除数)的内容。

  教学目标:

  1、理解分数除以分数计算法则的推导过程,掌握分数除以分数的计算方法。

  2、在此基础上归纳出分数除法统一的运算法则。

  3、教学过程中鼓励学生自觉运用化归的数学思想方法解决新问题。

  教学过程:

  一、复习引入,承前启后。

  1、 口算。

  6 9(算完指名说一说分数除以整数和整数除以分数的计算方法)

  (板书:分数除以整数整数除以分数)

  2、 师:这两种除法的计算方法好象有一种共同点,大家看出来了吗?(学生交流)

  3、 师:对,都是化除为乘,用被除数乘除数的倒数。可如果是分数除以分数呢?

  (板书:分数除以分数 )我们今天就来研究这一问题。

  【设计意图:迅速唤醒学生的旧知,为知识的'迁移创造一种条件。】

  二、创设情境,推导算法。

  1、出示例4:量杯里有升果汁,茶杯的容量是升。这个量杯里的果汁能倒满几个茶杯?(投影或挂图出示)

  (1)指名列式:

  (2)师:请同学们估计一下,能倒满几个茶杯?(学生发表意见)

  可能出现的意见:

  A、3杯。(==3)(板书)

  B、凭感觉好象是3杯。

  师:要是有量杯和茶杯就好了,倒一倒就可以知道结果。可现在没有,怎么办呢?能想出一个有说服力的方法吗?

  【设计意图:让学生说出自己的第一感觉,是对学生主动思考的一种鼓励,但又不能只停留在猜测这一层次,要激励学生进一步找寻解决问题的方法,并以此来验证自己的猜测是否科学、合理。】

  (3)学生讨论交流。

  可能出现的方法:

  A、化成整数计算。

  升=900毫升 升=300毫升 900毫升300毫升=3,所以,=3

  B、利用分数单位。

分数教学设计2

  教学目标:

  1、利用已有知识迁移、类推、发现百分数化分数、小数的规律和方法。

  2、在掌握百分数化分数、小数方法的基础上,利用逆向思维发现分数、小数化百分数的规律和方法,感受数学知识间的联系和区别。

  3、理解、掌握百分数和分数、小数互化的方法,并能熟练运用。

  4、通过合作交流、探索发现等数学学习活动教给学生学习方法、渗透数学思想方法,培养学生勤于思考、勇于探索的优良品质。

  教学重、难点: 探索、发现百分数和分数、小数的互化方法。

  教学过程:

  一、创设情境,引出可供研究的材料

  1、师:上节课我们研究了百分数的意义和写法,谁能说一说什么是百分数?百分数与分数有什么联系与区别?

  生:答略。

  师:你能说几个百分数吗?谁能联系生活实际说几个百分数?

  生:地球上陆地面积约占29%,海洋面积约占71%;空气中氧气约占20%……(教师有针对性地板书)。

  2、师:同学们知道的真多!是呀,百分数在生活中运用得非常广泛,其实我们平时的语言中也经常用到百分数的知识,比如:我们评价一个人时会说“褒贬参半”,“褒贬参半”用百分数表示是多少?

  生:50%(板书)。

  师:老师批评学生学习不刻苦时会说“三天打鱼两天晒网”,谁能用百分数解释一下?

  生:学习的时间占60%,玩耍的时间占40%。

  师:形容一个人非常突出会说“百里挑一”,“百里挑一”用百分数表示是多少?

  生:1%(板书)

  师:一个人考虑问题非常全面,事情处理得很完美,领导会说“我十二分满意”,“十二分满意”用百分数怎么表示?

  生:120%(板书)

  设计意图:巧用生活中的语言引出百分数,既得到了可供研究的材料又激发了学生的学习兴趣,自然,亲切!

  二、探索新知,发现规律

  1、百分数化分数、小数的规律。

  (1)根据旧知把百分数化成分数和小数。

  过渡:现在黑板上已经写出了很多百分数,看着这些百分数你还想研究些什么?

  生:怎样把百分数化成分数和小数。

  师:请你从黑板上任意选择一个百分数,把它化成分数和小数。

  生:我选50%,50%化成分数是,化成小数是0.5。

  师:能说说你是怎么想的吗?

  生:50%写成分数形成就是,约分化简后就是;根据分数与除法的关系可知相当于50÷100,所以50%化成小数是0.5。

  师:你说的真好!还有谁想说?

  ……

  教师根据学生的口答板书如下:

  27% = 0.27 =

  50% = 0.5 =

  1% = 0.01 =

  53.8% = 0.538 = =

  120% = 1.2 =

  (2)总结过渡:想一想解答这类问题有没有规律?能不能总结出一个方法?下面就请同学们以小组为单位,观察、讨论:把百分数化成小数和分数有什么规律?

  设计意图:不仅给学生梳理、总结了知识,教给学习方法,而且润物无声地对学生进行了思想教育,渗透了重要的数学思想方法,还巧妙地过渡到下一环节,可谓一举三得。

  (3)探索百分数化分数、小数的规律。

  ①小组讨论(教师参与某小组一起活动)。

  ②全班交流。

  师:谁愿意说一说你的`发现?

  生1:把百分数化成分数,只要把百分数先写成分数形式,再约分化简。(板书)

  生2:我发现把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位。(板书)

  师:你能解释一下吗?

  生:去掉百分号,这个数就扩大了100倍,要使数的大小不变就要把它的小数点向左移动两位,也就是缩小100倍。

  2、探究小数、分数化百分数的规律。

  (1)过渡。

  你还有什么发现?(生:一片茫然!)下面我们进行一个竞猜活动:在老师的提示下你能猜出下面我们要研究的内容的就请举手!

  师:这体现了一种思维方式,人们思考问题时往往从正面入手,逐步推理直至解决问题,我们称为顺向思维(已有个别学生举起了小手);但有时在顺向思维难以奏效的情况下或为使解题途径多样化而另辟溪径还会从反面入手(很多同学举手),我们称之为逆向思维(几乎全举起了手)。同学们,你们猜出了下面我们将要研究的内容了吗?

  生齐答:怎样把小数、分数化成百分数?

  师:刚才我们从左往右观察,发现了百分数化分数、小数的规律。如果我们反过来,从右向左观察,你会有什么发现呢?请同学们在小组内讨论、交流。

  设计意图:通过竞猜活动巧妙地将两块知识联系起来,顺利过渡到下一环节,同时渗透了“逐步逼近”的思想方法。

  (2)小组讨论交流。

  (3)全班交流。

  生1:把小数化成百分数,只要把小数点向右移动两位,同时在后面添上百分号。(板书)

  师:你能解释一下吗?

  生1:如果在小数的后面直接添上百分号,这个数就缩小了100倍,为使数的大小不变,所以要把原小数的小数点向右移动两位,也就是扩大100倍。

  生2:把分数化成百分数,要先把分数化成小数,再把小数化成百分数。(板书)

  生3:首先,我同意他的方法,但我想给他补充两个字——“通常”。

  师:能具体说说你的想法吗?

  生3:因为除了这个方法以外还有一些特殊的方法,比如可以直接把分子分母同时乘4就可化成12%;也就是说,当一个分数的分母是100的约数时,可以把分数的分子、分母同时扩大相同的倍数直接化成百分数。

  生4:受这位同学的启发,如果一个分数的分母是100的 倍数可以直接把这个分数的分子分母同时缩小相同的倍数化成百分数。比如,把分子、分母同时除以3就得到了59%。

  设计意图:抓住“通常”二字作足文章,体现“算法多样化”的理念,培养学生的发散思维。

  三、看书质疑

  1、揭示课题。

  师:通过以上研究,我们发现了“百分数和分数、小数互化”的方法,这就是今天这节课的研究内容。(板书课题)

  2、看书梳理。

  师:这部分内容在书上92~93页,请同学们打开课本从例1看到例4。

  3、质疑问难。

  师:你还有什么不明白或要提醒同学们注意的地方?

  生:当分数不能化成有限小数时,把分数化成百分数要怎么处理?要注意些什么?

  师:谁能解答这个问题?

  生1:当分数不能化成有限小数时,一般保留三位小数,再把小数化成百分数。

  生2:要注意“≈”的运用,如:≈0.167=16.7%,如果省略中间一步应写成≈16.7%。

  师:这样回答你满意吗?还有疑问吗?

  四、练习巩固,内化新知

  1、完成教材93页两个“练一练”。

  2、完成练习二十第3,4题。

  3、填表:在空格里填上适当的数。

  分 数

  小 数

  0.7

  0.36

  百分数

  70%

  7.5%

  五、总结回顾,梳理方法

  师:今天这节课我们研究了百分数和分数、小数的互化,回忆一下,我们是怎么获得这一知识的?你有哪些收获?

  六、作业:练习二十第1,2,5,6四题。

  板书设计:

  百分数和分数、小数的互化

  27% = 0.27 =

  50% = 0.5 =

  1% = 0.01 =

  53.8% = 0.538 = =

  120% = 1.2 =

分数教学设计3

  教学过程:

  一、复习与准备

  1、根据题意,看图写出代数式。

  (1)苹果有x kg,西瓜的质量比苹果重1/4。

  西瓜比苹果重kg,西瓜重kg。

  (2)鸡有x只,鸭的只数比鸡少1/3。鸭比鸡少X只,鸭有X只。

  2、根据题意列出方程。

  (1)六(1)班有15人参加了合唱队,占全班人数的1/3,六(1)班有多少人?

  (2)美术小组的人数比航模小组多1/4,美术组的人数比航模组多5人。航模组有多少人?

  出示例2。

  1、审题。

  (1)看例题的插图,理解题目的意思。复述题意,说说知道了什么,要求什么。

  (2)分析题意,说说你对“美术小组的人数比航模小组多1/4”这一条件的理解。

  (航模小组人数看作单位“1”,美术小组的人数多,多的人数相当于航模小组4等份中的1份。)

  (3)理解数量关系,让学生自己试着画图表示两个小组的人数关系。(学生可以选用条形、线段或其他图形表示人数)

  2、分析、解答。

  (1)出示线段图。

  (2)说说数量关系。

  根据已知条件“美术小组的人数比航模小组多1/4”直接得出数量关系:

  航模小组的人数+美术小组比航模小组多的人数=美术小组的人数

  或者:航模小组的人数+航模小组的人数×1/4=美术小组的人数

  (3)学生根据得到的数量关系列方程解答。

  (4)交流各自的解法。

  (5)阅读课本,完成课本上的填空。

  3、改变例2。

  出示:航模小组有20人,美术组的人数比航模小组多1/4,美术小组有多少人?

  (1)根据题意改变线段图。(只要改变已知数与未知数的位置)

  (2)根据图意解答。

  (3)启发学生与例2进行比较,说说你发现什么?

  (数量关系相同,已知条件与未知问题交换后,仍然可以根据例2的'数量关系列式)

  教师:上面用方程解例2的思路与分数乘法问题的思路统一,我们应该好好理解、掌握它。

  4、再次改变例2。

  出示:美术小组有24人,美术小组的人数比航模小组少14,航模小组有多少人?

  (1)根据题意改变线段图。

  (2)改变方程,解方程。

  5、 小结:关键是搞清哪两个量比较,谁多谁少,多或少了谁的几分之几。

  (三)运用新知,解决问题

  1、看图口头编实际问题。

  2、根据条件列方程。

  (1)小红买了一本书和一枝钢笔,书的价格是10元,正好比钢笔价格少3/8,钢笔的价格是多少元?

  (2)白兔的只数比黑兔多2/3,白兔有450只,黑兔有多少只?

  (3)白兔的只数比黑兔多2/3,白兔比黑兔多180只,黑兔有多少只?

  3、根据所给方程口头编实际问题。(小组内交流)

  四、全课总结(略)

  教学内容:教科书第39页的例2。

  教学目标:

  1、学习运用线段图帮助分析数量关系。

  2、学习列出方程,解决已知一个数的几分之几是多少,求这个数的实际问题。

  3、在分析数量关系,列出方程解决实际问题的过程中,提高分析问题、解决的能力。

分数教学设计4

  教学目标:

  1.使学生知道分数的产生过程,理解分数的意义,能对具体情景中分数的意义作出解释,能有条理地运用分数知识对生活中的问题进行分析和思考。掌握分数单位的特点。

  2.使学生感受到数学知识是在人类的生产和生活实践中产生的,培养对数学的兴趣,树立学习数学的信心。

  教学重难点:

  理解分数的意义。

  教学难点:

  对把多个物体组成的一个整体看作单位“1”的理解。

  教具准备:

  米尺,挂图,几张长方形、正方形的纸。

  教学过程:

  一、创设情境。

  1.测量。

  师生合作测量黑板的长是多少米?观察用米尺量了几次后还剩下一段,不够一米,还能否用整数表示?(不能)

  2.计算。

  老师把一个西红柿平均分给两个同学,每人分得的西红柿的个数怎样表示?(1/2)

  3.讲述。

  在人们实际生产和生活中,人类在进行测量、分物和计算时,往往不能得到整数的结果,这就需要用一种新的数——分数来表示,这样就产生了新的数—分数。今天,我们就来学习“分数的意义”。

  二、教学实施

  1.认识单位“1”。

  (1)动手操作。

  老师:如果用图表示,可能你们每人会有不同的表示方法,现在请你动手折一折或画一画来表示。

  学生展示成果。

  (2)老师投影出示图片。

  老师:投影片上的这些图,你能在每一幅图上表示出它的吗?学生先小组内交流,再集体反馈。

  学生甲:我把4根香蕉看作一个整体,一根香蕉是这个整体的。

  学生乙:把8个苹果看作一个整体,把这个整体平均分成4份,每份两个苹果是这个整体的。

  学生丙:我把12个△看作一个整体,把这个整体平均分成4份,每份3个△是这个整体的。

  学生丁:我把1米看作一个整体,把它平均分成4份,其中的1份,就是1米的。

  (3)概括总结。

  老师:刚才同学们在表示的过程中,有什么发现吗?

  学生甲:都是把物体平均分成4份,表示这样的一份。

  学生乙:我发现有的是把1个图形平均分,有的是把8个苹果、12个△平均分,还有的是把1米平均分。

  老师:一个图形,一个实物比较好理解,我们把它称为一个物体,那么8个苹果、12个△是由许多单个物体组成的,我们称作一个整体。一个物体,一些物体都可以看作一个整体,一个整体可以用自然数1来表示,通常把它叫做单位“1”。

  (4)举例。

  老师:对于这个整体,你还能想出其他的例子吗?

  学生:这个整体还可以是一筐茄子、一车煤、一个年级的人数、全中国人口等。

  2.概括分数。

  老师:通过上面的.学习,同学们对于单位“1”有了一个全新的认识,可以表示一个物体、也可以表示一些物体。整体“1”可以很小,也可以很大……

  刚才同学们举了很多分数的例子,那到底什么是分数,你能尝试用文字描述一下吗?

  先引导学生交流:把“谁”平均分?它表示的是一个什么样的数呢?

  学生相互交流补充。

  明确:把单位“1”平均分成若干份,表示这样一份或几份的数,叫分数。(板书)

  老师强调必须是平均分。

  三、巩固练习

  1、说说下面分数表示什么意义?每天睡眠时间占全天时间的1/3

  头的长度占身高的1/8

  2、说一说下图中的阴影部分占整个图的几分之几。

  四、课堂小结

  这节课我们学习了什么?师生共同回忆总结。

分数教学设计5

  分数的意义是人教版小学数学第八册第四单元的内容。这节课的内容是在学生学过分数的初步认识的基础上进行教学的。是学生系统学习分数知识的一个重要的起始概念。同时这节课也是为后面学习分数大小的比较、假分数与整数、带分数的互化、分数四则计算等打下基础的一课。因此本节在本章中具有十分重要的地位和作用。

  新课程标准明确提出:义务教育阶段的数学课程应突出体现基础性、普遍性和发展性,要实现人人学有价值的数学 以及不同的人在数学上得到不同的发展的目标。在基本思想中也指出:现代信息技术的发展对数学教育的价值、目标、内容以及学与教的方式产生了重大的影响。数学课程的设计与实施应重视运用现代教育技术。把现代信息技术作为学生学习数学和解决问题的强有力的工具。

  基于以上的认识,我将本节课的教学目标确定为:

  1.知识与能力:通过探究性学习使学生知道分数的产生,理解并掌握单位1 及其分数的意义。

  2.过程与方法:在网络平台的支持下,培养学生收集、处理信息的能力以及自主探究,合作学习的能力。

  3.情感态度与价值观:通过创设互相协作,积极探索的学习情境,培养学生的学习兴趣并渗透数学来源于实际生活的思想。

  教学重点:理解单位1,归纳出分数的意义。

  教学难点:理解并掌握单位1 及其分数的意义。

  教具准备:多媒体教学课件

  教学方法手段及学法指导:

  四年级的学生已经具备了一定的信息收集和处理的能力,并能在网络环境下做出自我检测和评价。为实现上述目标,突破重难点,我将本节数学课设计成以计算机网络为依托的一种教学方式。在这个环境中,通过提供宽松的教学环境,相关的教学资源,调动学生的积极性,让他们自己去发现问题、解决问题,使其真正成为学习的主人。充分利用计算机的交互功能,让学生在网络环境下去完成学习任务。对于有困难的学生给予及时的辅导与帮助,让学生在学习过程中真正成为一个有思想、会思考的探究者。

  教学过程:

  一、创设情景

  师:同学们,六一儿童节又快到了,你们高兴吗?每到这一天,我们学校都会组织野营拉练活动。

  (播放情境动画:同学们排着整齐的队伍向大山中走去)

  师:同学们在大自然中尽情地唱,尽情地跳。到了中午,大家席地而坐,一起用餐,别提多高兴了。可是有一个低年级的小同学在吃午餐时却遇到了一个问题。

  (出示课件:一张饼,4个人分)

  师:原来啊,他们组有4个人,可是他只带了一张pizza饼,该怎么分才能让大家都满意呢?你们愿意帮帮他吗?

  师:从这里不难看出,在实际生活中,往往会得到一些不能用整数表示的结果,比如分东西、测量或计算等,这时就需要用一种新的数分数来表示,这样就产生了分数。这节课我们就共同研究分数的意义。

  说明:知识源于生活,又服务于生活。教学中,通过创设学生感兴趣的情境,联系学生已有的生活经验,让学生体会到数学知识、数学问题来源于生活的思想。

  二、归纳意义

  1.回顾旧知

  师:三年级时我们对分数已经有了初步的认识,请同学们回忆一下,你都知道分数的哪些知识?

  2.小试身手

  师:现在老师想让同学们亲自动手分一分,看看从具体事物中我们能得到哪些分数。同学们愿意吗?请学生点击进入到小试身手的界面中,选择自己喜欢的一种物品,点击放大后用自己喜欢的方式分一分,并思考可以得到哪些分数?

  问:你们得到分数了吗?谁愿意说说是怎样得到的?

  (指名选择不同物品,采用不同分法,得到不同分数的学生进行汇报)

  说明:这一环节的设计力求实现学习自主性。把学习资源交给学生,让他们按自己的想法去操作,分得的结果必然各异,得到的分数自然也各不相同。让学生从动手操作中,亲身体会分数的产生,同时也极大地调动了学生的自主探究欲望,在实践中思考,在思考中归纳,从而为独立归纳分数的意义奠定了基础。

  3.尝试归纳

  问:谁能用自己的话说说什么是分数?

  师:让我们看看最科学的说法。(出示分数的意义)

  4.理解单位1

  问:同学们想一想,单位1可以指什么?

  师:同学们说的都对,大到宇宙空间,小到微尘沙粒,我们想用分数的思想去研究谁,就可以把谁看作单位1。

  说明:按照学生认知的发展规律展开新知的探索,并通过观察、操作、思考、归纳等教学过程,让学生参与知识形成的全过程。苏霍姆林斯基说:在人的心灵深处有一种根深蒂固的需要,这就是希望感到自己是一个发现研究者、探索者。而在儿童意识中,这种需要特别强烈。在这里新知的探索是建立在学生已有的知识平台上,并给他们一个自主、自由的探索空间,去主动构建知识的体系。根据儿童的认知规律及思维特点,在探索中使学生能够从多角度、多侧面、多方位感受知识产生的过程,为学生创设一个积极参与、主动学习的'网络环境,培养学生的思维品质及合作意识。教学中,让学生主动建构,师生共同合作,共同探究,实现由不知到知,由知其然到知其所以然的认识,充分体现学生活动的主体性和自主性。

  5.即时训练

  问:你能找出这两则报道中的单位1吗?

  三、深化理解

  (出示蛋糕的画面)

  问:同学们,看到这个画面你想到了什么?

  再仔细观察,你还发现了什么?(上面有12支蜡烛、8朵玫瑰花)

  (动态演示:把蛋糕平均分成四份)

  从这个画面中,你发现了哪些有关分数的知识?

  (学生可以分别把一整块蛋糕、12支蜡烛、8朵花看作单位1进行阐述,并从上得到相应的分数)

  说明:这一环节的设计,不仅可以培养学生的观察能力和分析能力,而且可以充分调动学生的思维。这里,观察的角度不同,单位1也不同,通过观察和思考,使学生明确,虽然每一份都可以用1/4表示,但由于我们确定的单位1不同,这个分数所表示的实际意义也不同。

  四、自测反馈

  师:同学们现在又学会了很多关于分数的知识,请点击进入到自我挑战的内容。比比看,谁能在最短的时间内完成所有的挑战练习。

  说明:这一环节的设计,可让不同层次的学生自由选择进入不同类型的练习,同时在学习活动中,充分信任学生,使学生能够进行创造性学习和活动,通过课件的反馈功能及时发现自己的错误,最后通过知识点的统计结果可让学生自我检测学习效果。从而培养学生的思维品质。

  师:同学们战况如何啊?完成所有挑战练习,而且全都正确的举一下手。

  问:谁能说说,这些人还可以用哪一个数来表示?为什么?

  说明:这一环节的设计,巧妙地让学生把刚刚学到的分数知识适时恰当地运用于课堂当中,不但及时地检测了学生对分数的意义的理解情况,考察了学生活学活用的能力,而且让学生切身感受到了分数离我们的生活其实非常近。

  五、思维拓展

  师:老师这里还有一组更难的挑战思维的练习,你们愿意尝试吗?(出示开放题)

  说明:练习设计,层次多样,注重培养学生的创新意识和实践能力。本节课的练习,分为自我挑战练习和开放拓展练习。这样的设计既巩固了基础知识又让学生将所学的知识与生活实际紧密结合起来,不仅可以把课堂气氛推向高潮,而且让学生深刻地体会到今天所学的数学知识能够解决生活中的实际问题,是有用的数学,从而进一步培养了学生的创新意识和应用能力。

  六、现场调查

  师:现在老师要进行一项小调查。请同学们进入到参与调查的界面,发表一下你对这节课的评价。

  你认为这样的学习方式有趣吗?是觉得很有趣?还可以?还是没意思?根据你自己的意愿,选择一项提交上来。

  (学生根据自己的意愿去自由选择提交)

  师:我们来查看一下结果。从这个结果中,你能看出什么?你能提出哪些关于分数的问题?

  说明:这一环节的设计,为学生提供了表达自己学习情感的空间。学生可根据自己的意愿对本节课的学习方式和效果进行评价,而且在统计结果中还可让学生根据相关信息提出分数问题,对理解分数的意义又一次进行了提升。

  七、全课小结

  师:通过这节课的学习,同学们有哪些收获和体验,请把你的想法签写到留言板上吧!

分数教学设计6

  教材分析

  “分数的意义”是新教材小学数学课本第十册的内容,这部分教材是在学生初步认识了分数的基础上,通过学习使学生从感性认识上升到理性认识,理解单位“1”,概括出分数的意义。

  学情分析

  分数的意义是在学生已经经历了分数的'初步认识和积累了丰富的感性经验的基础上进行教学的。因此分数的意义已经在五年级学生的头脑中形成了概念。同时,五年级的学生已经有了一定的自学能力,并能通过已往学过的知识,在动手操作活动中发现和解决一些问题。

  这节概念课,在设计上突破传统教学模式,思路独特新颖,教学时,还要结合学生的实际经验和已有知识设计富有情趣和意义的活动,使他们有更多的机会,从周围熟悉的事物中学习和理解数学,感受数学与现实生活的密切联系,提高学生运用数学知识解决实际问题的能力,从而提高学生的综合素质。

  教学目标

  1.知识与技能:理解并掌握分数的意义。

  2.过程与方法:通过折一折、分一分,引导学生学会抽象概括,知道一个物体、一个计量单位、一个整体都可以用单位“1”表示。培养初步的逻辑思维能力。

  3.情感与价值观:使学生感受到数学知识同样是在人类的生产和生活实践中产生的。

  教学重点和难点

  教学重点:

  (1)分数的意义

  (2)“单位1”的理解。

  教学难点:

  (1)单位”1”的建立及理解。

  (2)分数“单位”的理解。

分数教学设计7

  教学内容:

  《分数的意义》第一课时。

  学情分析:

  学生在三年级学习《分数的初步认识》时,已经借助操作、直观,初步认识了分数,已经知道了分数的各部分的名称,会读、会写简单的分数,还会比较分数大小及进行简单的同分母分数加、减法。

  教学设想:

  本节课中单位“1”和分数单位这两个概念教学非常重要,应从直观到抽象,利用操作、讨论、交流等形式展开小组学习,适当展开概念的形成过程,帮助学生在过程中获得者得感悟,使学生真正题解这些概念的意义。

  教学目标:

  1.在学生原有知识基础上,使学生知道分数的产生,理解分数的意义,知道分数各个部分和分数单位的含义。

  2.利用操作、讨论及交流等形式展开小组学习,培养学生的合作探究能力,培养质疑和验证科学知识的能力。

  3.培养学生的抽象、概括能力。

  教学重点:

  明确分数和分数单位的意义,理解单位“1”的含义。

  教学难点:

  单位“1”的理解。

  教具和学具:

  长方形白纸、一米长的绳子、多媒体课件。

  教学过程:

  一、创设情景,温故引新。

  师:我们已经初步认识了分数。哪一位同学来说说几个分数?你知道分数各部分的名称吗?

  师:那你们知道分数是怎样产生的吗?

  二、教学分数的产生。

  1.在古代,人们就已经遇到了这样的问题。(师用一根打了结的绳子演示古人测量的情况)。课件呈现情境图,介绍分数的起源和发展历史。

  2.计算中也遇到这样的问题。

  3.课件展示分物不能得到整数的情况。

  .总结:在测量、分物的时候,可能得不到整数的结果,需要用一种新的数表示——分数表示。因此分数是人类为了适用实际需要而产生的。

  三、教学分数的意义。

  1.师:下面老师要先考考大家,你能举例说明1/2的含义吗?(多媒体出示题目,学生口答)

  出示一个饼平均分成两份。

  师:每一块可以用什么分数表示?它表示什么意思?

  师强调:一定要平均分(板书:平均分)。

  展示把一个长方形和1米长的绳子平均分。

  学生说一说每份与总数的关系。

  2.重点对一些物体平均分,每一份与总数的关系,试着用分数来表示。认识单位“1”。

  师:利用这三种材料,同学们创造出了好多分数。刚才在表示这些分数时,我们都是把哪些东西来平均分的?

  生:一张长方形纸、一米长的绳子、6个小立方体。

  师:像这样把一张长方形纸平均分,我们可以称之为把一个物体平均分。

  把一米长的绳子平均分,我们可以称之为把一个计量单位平均分。

  把8支笔平均分给4个同学,我们又可以称之为把一些物体平均分。

  师小结:一个物体、一些物体等都可以看做一个整体,把这个整体平均分成若干份,这样的一份或几份都可以用分数来表示。

  师:像这样的一个物体、一个计量单位、一个整体,我们可以用自然数“1”来表示,通常把它叫做单位“1”,教师强调:

  ①单位“1”不仅可以指一个物体、一个计量单位,也可以是很多物体组成的一个整体。如:一个梨、一枝铅笔、一堆煤、一仓库粮食等等,把什么平均分,就应把什么看做单位“1”。

  ②单位“1”和自然数“1”的区别:自然数1是一个数,只表示一个具体事物。如:一个人、一本书、一间房子……它是自然数的计数单位。而单位“1”不仅可以表示某一个具体事物,还可以表示一堆、一群……它表示被平均分的整体。

  概括分数的意义:把单位“1”平均分成若干份,表示这样的一份或几份的数,叫做分数。

  用学具创造出一个分数,同桌间说说你这个分数的意义。

  理解分子分母的.意义。

  师:通过刚才的学习,大家知道了分数的意义,请同学们想一下,这个“若干份” 、“这样的一份或几份”分别是分数中的什么?

  小组交流。后教师小结。

  师:接下来老师想出几道题来考考大家,看看哪位同学学的又快又好。

  ①把文具盒里的所有铅笔平均分给4位同学,每个同学得到这盒铅笔的几分之几?

  生:1/4

  师:为什么可以用1/4来表示?

  师:如果把这盒铅笔平均分给5个同学,每个同学得到这盒铅笔的几分之几呢?

  如果把这盒铅笔平均分给10个同学,每个同学得到这盒铅笔的几分之几呢?

  如果把这盒铅笔平均分给100个同学,每个同学得到这盒铅笔的几分之几呢?

  师:现在这个文具盒里有8支铅笔,把它平均分给2个同学,每个同学得到的铅笔能用1/2表示吗?是几支铅笔?

  师:如果我再增加2支铅笔,把10支铅笔平均分给2个同学,每个同学得到的铅笔还能用1/2表示吗?是几支铅笔?

  师:为什么同样是1/2,铅笔的支数不一样?

  生:分小组讨论

  师:是啊,因为一个整体表示的具体数量不同,所以同样是1/2,铅笔支数也就不一样了。

  四、教学分数单位。

  师:整数有计数单位个、十、百、千、万……分数是否也有计数单位呢?它的计数单位又是怎样规定的?

  多媒体出示:把单位“1”平均分成若干份,表示其中一份的数叫做分数单位。

  师:也就是说分数单位是由一个分数的分母决定的,分母是几,它的分数单位就是几分之一。

  师:举例说明,并说出几个分数让学生回答,后让学生自己也说一说。

  五、小结。

  今天这节课我们学习了?你有哪些收获?

  练习:数学书上做一做。

分数教学设计8

  教学内容:人教版小学数学第十册第107页至108页。

  教学目标:

  1、知识目标:通过教学使学生理解和掌握分数的基本性质,能利用它改变分数的分子和分母,而使分数的大小不变。

  2、能力目标:培养学生的观察能力、动手操作能力和分析概括能力等。

  3、情感目标:让学生在学习过程中养成互相帮助、团结协作的良好品德。

  教学准备:长方形纸片、彩笔、各种分数卡片。

  教学过程

  一、创设情境,激发兴趣

  1.课件示故事。同学们,今天是快乐的,老师祝愿同学们节日快乐!在我们欢庆自己的节日时,花果山圣地也早已是一派节日喜庆的气氛。

  【六一节到了,猴山上张灯结彩,小猴们享受着节日的快乐。猴王给小猴们做了三块他们爱吃的饼。它先把第一块饼平均切成四块,分给第一只小猴贝贝一块。第二只小猴佳佳见到说:“太小了,我要两块。”猴王就把第二块饼平均切成八块,分给第二只小猴两块。第三只小猴丁丁急了,它抢着说:“我要三块,我要三块。”于是,猴王又把第三块饼平均切成十二块,分给第三只小猴丁丁三块。贝贝、佳佳见了,连忙说:“猴爷爷,不公平,不公平,我们要分得和丁丁的同样多。”】

  “同学们,猴王真的分得不公平吗?”

  二、动手操作、导入新课

  同学们,这个故事告诉了我们什么?猜想一下猴王分得公平吗?为什么公平?我们平常怎样去做?让我们也来分分看。请每组拿出课前准备的三张长方形纸片,共同来分一分,并完成操作报告(课件出示操作报告)。请小组长分工一下,明确记录的同学。

  任选一小组的同学台前展示实验报告,并汇报结论。

  教师根据学生汇报板书:14=28=312

  2.组织讨论。

  (1)通过操作我们发现三只猴子分得的饼同样多,表示它们分得饼的分数是相等关系。那么,这三个分数什么变了,什么没有变?让学生小组讨论后答出:它们平均分的份数和表示的份数也就是分数的分子和分母变化了,但分数的大小不变。

  (2)猴王把三块大小一样的饼分给小猴子一部分后,剩下的部分大小相等吗?你还能说出一组相等的分数吗?学生通过观察演示得出结论教师板书:34=68=912。

  3.引入新课:黑板上二组相等的分数有什么共同的特点?学生回答后板书:分数的分子和分母, 分数的大小不变。虽然他们的分子和分母变化了,但是它们的大小却不变。那么他们的分子和分母变化有规律吗?我们今天就来共同探讨这个变化规律。

  三、比较归纳,揭示规律。

  请每组拿出探究报告,任意选择黑板上的二组相等分数中的一组,共同讨论、探究,并完成探究报告。

  1.课件出示探究报告。

  2.分组汇报,归纳性质。

  (1)从左往右看,分子、分母的变化规律怎样?选择一组学生根据探究报告,到黑板上边说边用箭头表示出分子、分母的变化过程。

  (根据学生回答板书:同时乘上 相同的数)

  (2)从右往左看,分数的分子和分母又是按照什么规律变化的?

  (根据学生的回答板书:除以 )

  (3)有与这一组探究的分数不一样的吗?你们得出的规律是什么?

  (4)综合刚才的探究,你发现什么规律?

  根据学生的`回答,揭示课题,

  (……这叫做板书:分数的基本性质)

  对这句话你还有什么要补充的?(补充“零除外”)

  讨论:为什么性质中要规定“零除外”?

  (红笔板书:零除外)

  (5)齐读分数的基本性质。在分数的基本性质中,你认为要提醒大家注意些什么?(同时、相同的数、0除外)。为什么?你能举例说明吗?教师则根据学生回答,在相应的字下面点上着重号。

  师生共同读出黑板上板书的分数基本性质(要求关键的字词要重读)。

  3、智慧眼(下列的式子是否正确?为什么?)

  (1)35=3×25=65 (生:35的分子与分母没有同时乘以2,分数的大小改变。)

  (2)512=5÷512÷6=12 (生:512的分子除以5,分母除以6,除数的大小不同,分数的大小也不同)

  (3)112=1×312÷3=34 (生:112的分子乘以3,而分母除以3,没有同时乘以或除以,分数的大小不相等。)

  (4)25=2×x5×x=2x5x (生:x在这里代表任何数,当x=0时,分数的大小改变。)

  4、示课件讨论:现在你知道猴王运用什么规律来分饼的?如果小猴子要四块,猴王怎么分才公平呢?用分数表示为?如果要五块呢?

  三、回归书本,探源获知

  1、浏览课本第107—108页的内容。

  2、看了书,你又有什么收获?还有什么疑问吗?

  3、师生答疑。

  你会运用分数与除数的关系,以及整数除法中商不变的性质,说明分数的基本性质吗?

  4、自主学习并完成例2,请二名学生说出思路。

  四、多层练习,巩固深化。

  1、热身房。35=3×()5×()=9()

  824=8÷()24÷()=()3

  学生口答后,要求说出是怎样想的?

分数教学设计9

  一、设计理念:

  《数学课程标准》指出:数学教学,要让学生亲身经历数学知识的形成过程,也就是经历一个丰富、生动的思维过程,使学生通过数学活动,掌握基本的数学知识和技能,激发学生对数学学习的兴趣。在新课程要求下,数学教学不再是单一的、枯燥的、以被动听讲和练习为主的形式,而是应该引导学生自主探究与合作交流。学生在观察、操作与交流等数学活动中,逐步形成自己对数学知识的理解和有效的学习策略。

  本节课我在学生对分数初步认识的基础上,以学生发展为立足点,以自我探究为主线,以求异创新为宗旨,引导学生动手操作,观察辨析、自主探究,充分调动学生学习的积极性、主动性,让学生全面、全程、全心地参与到每一个教学环节中。在教与学的过程中,使学生观察、操作、口头表达等能力得以培养,使学生的创新意识得以开发与增强。

  二、教材分析:

  《分数的意义》是在四年级学生已经初步认识了分数,并且知道把一个物体、一个计量单位平均分成若干份,取这样的一份或几份,可以用分数来表示的基础上进行教学的;重点是使学生理解不仅一个物体,一个计量单位可用自然数1来表示,许多物体看作的一个整体也可用自然数1来表示,通常把它叫做单位“1”,进而总结概括出分数的意义。

  三、学情分析:

  学生在四年级已经认识了分数,对分数的各部分名称已经了解,并且知道分数是把一个物体、一个计量单位进行平均分。在以往有关分数的教学中,感觉同学们对分数的意义的理解不是很清楚。学生也觉得分数这个东西很抽象,存在理解的误区。学生对于分数的感知很少,好多就是靠背下来的,没有亲身体会过分数的真正含义。由于分数与“除法”、“比”都有着直接的联系,意义不理解会直接影响学生的后续学习。

  四、设计思路:

  学生认识事物是由易到难,由浅入深循序渐进的。学生虽然在前面的学习中对分数有了初步的认识,但要使学生理解单位“1”的概念,进一步明确分数的意义,必须遵循他们的认知规律。智慧的生成需要一个理想的“融炉”,而这个融炉就是先进的教学理念和具有挑战新问题情境的结合体。因此,本课坚持以学生为主体,教师为主导的原则。通过动手操作、直观演示,让学生充分感知,再经过比较、归纳,突破许多物体组成的一个整体也可以看作单位“1”这一难点,层层推进、步步深入,并在此基础上理解分数的意义,培养了学生的多种能力。

  五、教学目标及教学重难点:

  教学目标:

  知识与技能:在学生初步认识分数的基础上,结合具体情境,进一步认识分数,理解单位“1”及分数的意义。

  过程与方法:通过动手操作使学生经历分数形成的过程,探索分数的意义,充分感知体验分数概念中的各要素,培养学生的实际操作能力和抽象概括能力。

  情感态度价值观:通过活动培养学生合作交流意识,感受数学与生活的密切联系;结合教学内容适时渗透数学文化,培养学生的数学素养。

  教学重点:进一步认识单位“1”,理解分数的意义。

  教学难点:理解分数的意义。

  六、教学过程:

  (一)、复习导入:

  现在天气越来越热了,看老师给大家带来了什么?(出示西瓜图)现在要把这个西瓜合理的分给每一个同学,应该怎样做?(平均分)每位同学得到多少?

  对于这个分数你有哪些认识?(关于这个分数,我已经知道了)

  【设计意图:通过复习导入,引发学生对旧知的回顾,明确分数的各部分名称。】

  (二)、理解分数的意义。

  1、认识单位“1”

  (1)、举例平均分

  师:刚才我们是把一个西瓜进行了平均分,在生活中,我们还可以把什么进行平均分?(学生举例)

  估计学生会举出:把一个物体进行平均分

  把一些物体进行平均分(如果学生没有说到一些物体的平均分,教师直接引导:我这里有一些笔,你能把它们平均分给两个同学吗?)

  抓住学生中所说的把一些物体进行平均分的事例问:他把什么进行了平均分?和前面几个同学说的有什么不一样?你还能举出这样的例子吗?

  (2)师小结揭示单位“1”:刚才大家所说的一个物体,一个图形,一个计量单位,一些物体都可以看做一个整体,这些个整体,我们在数学中,我们称它为“1”。

  举例单位“1”

  (3)举例单位“1”

  师:谁能说说我们还可以把哪些想成一个单位1。

  老师这里还有一些句子,读读看,它们各把什么看作单位“1”。

  书上练习:上半月完成全月计划的

  男工人数占全厂工人总数的

  一条路,已修好全长的

  小丽看了一本书的

  (4)总结单位“1”

  刚才我们列举了这么多的单位“1”,老师这里用一首儿歌概括了,读读看:

  一条道路一个梨……

  一吨稻谷一克米……

  一片树林一群鸡……

  都可看做单位“1”。

  自己读读看。看懂了吗。这里的指的是一个物体一个计量单位

  (5)单位“1”与数字1的`比较

  师:刚才我们说了那么多的单位1,那么单位“1”和以前所学的数字1有什么区别。

  【设计意图:通过大量的举例,理解单位“1”,在原有的基础上,对单位“1”有更深更广的认识。】

  2、揭示分数的意义

  (1)集体演示分数

  老师这里有一些笔,想把它平均分给两个同学,每个同学分到多少?

  如果我想平均分给4个小朋友,该怎样做呢?(指生来做)

  其中的一份就是,两份呢?

  (2)学生独立动手操作得到分数

  利用手中的材料,你有多少种不同的平均分的方法?可以得到哪些分数?

  把找到的分数和小组同学进行交流,说清你是怎样找到分数的?

  活动材料:6只小狗8只梅花鹿10只蝴蝶4块橡皮

  (3)汇报

  学生汇报:

  渗透分数单位明确分数单位

  同一个单位“1”平均分的份数不同可以得到不同的分数

  同样的分数,由于单位“1”的不同,每份所表示的具体数量也不同

  【设计意图:让学生在动手操作中,了解分数,理解分数的意义,(www.fwsir.com)明确同一个单位“1”平均分的份数不同可以得到不同的分数,同样的分数,由于单位“1”的不同,每份所表示的具体数量也不同】

  (4)具体环境中理解

  老师这里有一句话,一起来看一看:中桥小学五一班共有学生20人,其中男生13人,男生的人数占全班总人数的几分之几?你是怎样想的?

  (5)揭示意义

  师小结:我们把单位“1”平均分成若干份,表示这样的一份或几份的数,就叫分数。这就是分数的意义。一起读一读。(板书)(如果开始学生说不出,在这里揭示:分母表示什么?分子表示什么?)

  【设计意图:学生由具体的事物抽象出语言形式,是思维的一个提升、概括。】

  (三)、生活中的分数:

  1、用线段上的点表示分数

  2、数学与生活密不可分,读读看。学生在自由读题后指生回答。

  果品生产是平谷农业经济的支柱产业和农民致富的主要来源,平谷建成了大桃、板栗、红杏、苹果等8大果品基地,年总产量1.6亿公斤,约占北京市总产量的1/4,连续12年居北京市首位,是全国果品百强区之一。表示把北京市果品总量看做单位1,平均分成4份,平谷的果品总量占其中的1份。

  【设计意图:让学生了解到分数不止在数学课堂中体现,在生活中也有着广泛的应用,从而激发对家乡的热爱。】

  (四)、数学小知识

  分数在我国很早就出现了,并且用于社会生产和生活。我国春秋时代(公元前770年~前476年)的《左传》中,规定了诸侯的都城大小:最大不可超过周文王国都的三分之一,中等的不可超过五分之一,小的不可超过九分之一。中国使用分数比其他国家要早出一千多年。所以说中国有着悠久的历史,灿烂的文化。

  【设计意图:数学小知识的介绍,不仅让学生了解数学的文化发展,更能进一步激发学生学习数学的热情。】

  (五)、看书:这节课我们所学的内容是75页到77页,完成练习十二的1、2、4、5、8题。

  (六)、游戏下课。

分数教学设计10

  教学内容:

  新课标实验教科书六年级上册第77-78页,完成做一做和练习十八的部分习题

  教学目标:

  1、正确理解百分数的意义和它的读写法

  2、知道百分数与分数之间的区别,会解释日常生活中常见的百分数。

  3、通过搜集学习材料让学生体验数学与日常生活的联系,激发学生学习数学的兴趣,树立学好数学的信心。

  教学重点:

  百分数的意义及读写法

  教学难点:

  分数与百分数的意义之间的联系和区别

  教具准备:

  课前查阅百分数的资料

  小黑板或投影

  教学过程

  一、复习。

  1.回答:(1)7米是10米的几分之几?

  (2)51千克是100千克的几分之几?

  2.说出下面各个分数的意义,并指出哪个分数表示具体数量,哪个分数表示倍比关系。

  (1)一张桌子的高度是 米。

  (2)一张桌子的高度是长度的 。

  (引导学生说出: 米表示0.81米,是一具体的数量; 表示把长度平均分成100份,桌子高度占81份,表示倍比的关系。)

  二、新授课

  1.在日常生活中,同学们会经常看到或听到这样一些数:(出示投影或小黑板)

  期末考试,全班同学的及格率为100%,优秀率超过了50%;体检的结果显示,我校的近视人数占全校总人数的.64%……像100%、50%、64%这样的数叫做“百分数”。今天我们就来学习百分数的意义及其读写法。

  2、同学们能举出几个百分数的例子吗?说说在生活中你们还在哪些地方见到百分数?

  3、举例说说百分数表示什么,并归纳出百分数的意义。

  小结:百分数表示一个数是另一个数的百分之几,也叫做百分率或百分比。

  提问:百分数表示两个数之间什么关系?(倍数关系。)应不应该有单位名称?

  4、讨论百分数和分数的联系及区别:分数既可以表示一个具体的数量,又可以表示两个数的倍比关系。而百分数只表示两个数的倍比关系,它的后面不能写单位名称。

  5、教学百分数的写法:通常不写成分数形式,而是在原来分子后面加上百分号“%”来表示。如:

  百分之九十 写作:90%;

  百分之六十四 写作:64%;

  百分之一百零八点五 写作:108.5%。

  (写百分号时,两个圆圈要写得小一些,以免和数字混淆)

  6、教学百分数的读法:百分数的读法和分数的读法大体相同,也是先读分母,后读分子

  三、巩固练习

  1.第105页“做一做”,

  2.第106页第1,2题,

  3.(课件)判断:

  (1)分母是100的分数叫做百分数。(2) 千米可以写成27%千米。

  (3)百分数的分母一定是100。

  (4)五(2)班45人,体育全部达标,达标率100%。

  4.填空:(1)一本书看了40%,表示( )占( )的40%。

  如果书是100页,看了( )页;书是 200页,看了( )页。

  (2)一条公路,修了25%,还剩 ( )%没修。

  (3)火车速度比汽车快25%,火车的速度是汽车的( )%。

  5.一个工厂十月份的产值相当于九月份的百分之一百零八,写出这个百分数。十月份的产值比九月份的多了还是少了?

  四、课堂总结

  这节课我们学习了哪些知识?(百分数的意义、读法和写法。)你有什么收获?

  课后反思:

  这节课我的教学设计是首先进行复习,巩固分数的意义;第二、联系生活实际引出百分数;第三理解百分数的具体含义;区别分数与百分数的意义与不同点;最后教学百分数的读写。四个层次,思路清晰,教学层次明显。其中,我把教学重点放在理解百分数的具体含义上,并及时与分数做了比较,教学结构较为严谨。在练习设计上我也注重了层次性和实用性。从学生的作业反馈来看,这节课的效果比较好!

分数教学设计11

  教材分析:

  本节课是在学生已掌握分数除法的意义,分数乘法应用题以及用方程解已知一个数的几分之几是多少,求这个数的文字题的基础上进行教学的,通过教学使学生理解已知一个数的几分之几是多少,求这个数的应用题是求一个数的几分之几是多少的应用题的逆解题,从而认识到乘、除法之间的内在联系,也突出了分数除法的意义,本课教学的重点是数量关系的分析,判断哪个量是单位“1”,难点是用解方程的方法解答分数除法应用题.

  教学要求:

  1、使学生认识分数除法应用题的特点,能根据应用题的特点理解解题思路和解题方法,学会解答已知一个数的几分之几是多少求这个数的应用题。

  2、进一步培养学生自主探索问题解决的能力和分析、推理和判断等思维能力,提高解答应用题的能力。

  教学重难点:

  分数除法应用题的特点及解题思路和解题方法。

  教学过程:

  一、 谈话激趣,复习辅垫

  1. 师生交流

  师:同学们,你们知道在我们体内含量最好多的物质是什么吗?(水)

  对,水是我们体内含量最多的物质,它对我们人体是至关重要的,是构成我们人体组织的主要成分。那么你们了解体内水分占体重的几分之几吗?

  师:老师查到了一些资料,我们一起来看一下。(课件出示)

  2.复习旧知

  师:现在你们知道了吧!同学们如果告诉你们,我的体重是50千克,你们能很快算出我体内水分的质量吗?

  学生回答后说明理由。

  师:算一算你们自己体内水分的质量吧!

  生答

  师:一儿童的体重是35千克,你们能帮他算出他体内水分的质量吗?你们都是怎么算出来的呢?

  生回答后出示:儿童的体重× 5 (4 )=儿童体内水分的重量

  35× 5 (4 )=28(千克)

  师:谁还能根据另一个信息写出等量关系式?

  成人的体重× 3 (2 )=成人体内的水分的重量

  2. 揭示课题

  师:同学们以前的知识学得可真好,如果老师告诉你们小朋友们体内有28千克水分,你们能算出他的体重吗?这就是我们今天要来研究的分数除法应用题。

  二、 引导探究,解决问题

  1. 课件出示例题。

  2. 合作探究

  师:同桌互相商量一下,要解决这个问题,数量关系是怎样的?用自己喜欢的方式把它表示出来并解答出来。

  3. 学生汇报

  生1:根据数量关系式:儿童的体重× 5 (4 )=儿童体内水分的重量,再根据关系式列出方程进行解答。(师随着学生的发言随机出示课件)

  生2:直接用算术方法解决的,知道体重的 5 (4 )是28千克,就可以直接用除法来做。

  28÷ 5 (4 )=35(千克)

  4. 比较算法

  比较算术做法与方程做法的优缺点?

  (让学生进行何去讨论,通过比较使学生看到列方程解,思路统一,便于理解。)

  5. 对比小结

  和前面复习题进行比较一下,看看这题和复习题有什么异同?

  (1) 看作单位“1”的数量相同,数量关系式相同。

  (2) 复习题单位“1”的量已知,用乘法计算;

  例1单位“1”的量未知, 可以用方程解答。

  (3) 因为它们的数量关系式相同,所以这两种题目的解题思路是一致的,都是先找出把哪个数量看作单位“1”,根据单位“1”是已知还是未知,再确定是用乘法解还是方程解。

  6.试一试: 一条裤子的价格是75元,是一件上衣的 3 (2 )。一件上衣多少元?

  问:这道题已知什么?求什么?谁和谁在比?哪个量是单位“1”?

  单位“1”是已知还是未知的?

  根据学生回答画线段图。

  根据题中的数量关系找学生列出等量关系式。

  学生根据等量关系式列方程解答(找学习板演,其它学生在练习本上做)。

  师:这道题你还能用其它方法解答吗?

  (根据分数除法的意义,已知两个因数的只与其中一个因数,求另一个因为用除法计算。)

  三、 联系实际,巩固提高

  1. (投影)看图口头列式,并用一句话概括题中的等量关系。

  (1)

  (2)

  2.练一练:

  (1)、小明体重24千克,是爸爸体重的3/8 ,爸爸体重是多少千克?

  (2)、一个修路队修一条路,第一天修了全长的 5 (2 ),正好是160米,这条路全长是多少米?

  3.对比练习

  (1)一条路50千米,修了 5 (2 ),修了多少千米?

  (2) 一条路修了50千米,修了 5 (2 ),这条路全长是多少千米?

  (3)一条路50千米,修了 5 (2 )千米,还剩多少千米?

  四、全课小结畅谈收获

  ①今天这节课我们研究了什么问题?②解答分数除法应用题的关键是什么?③单位“1”是已知的用什么方法解答?单位“1”是未知的可以用什么方法解答。

  教师强调:分析应用题数量关系比较复杂,因此在解答分数应用题时要注意借助线段图来分析题中的数量关系,解答后要注意检验。

  设计意图:

  一、从生活入手学数学。

  《国家数学课程标准》指出:“数学教学要从学生的生活经验和已有的知识背景出发,向他们提供充分的从事数学活动和交流的机会。”教学一开始教师就改变由复习旧知引入新知的传统做法,直接取材于学生的生活实际,用介绍该班的情况引发学生参与的积极性,使学生感到数学就在自己的身边,在生活中学数学,让学生学习有价值的数学。

  二、关注过程,让学生获得亲身体验。

  教学中,为让学生认识解答分数乘法应用题的关键是什么时,我故意不作任何说明,通过省略题中的一个已知条件,让学生发现问题,亲自感受应用题中数量之间的联系,想方设法让学生在学习过程中发现规律。从而让学生真切地体会并归纳出:解答分数乘法应用题的.关键是从题目的关键句找出数量之间的相等关系。

  在教学中体现了“自主、合作、探究”的教学方式。以往分数除法应用题教学效率并不高,究其原因,主要是教师教学存在偏差。教师喜欢重关键词语琐碎地分析,喜欢用严密的语言进行严谨地逻辑推理,虽分析得头头是道,但容易走两个极端,或者把学生本来已经理解的地方,仍做不必要的分析;或者把学生当作学者,对本来不可理解的,仍做深入的、细碎的剖析,这样就浪费了宝贵的课堂时间。教学中我把分数除法应用题与引入的分数乘法应用题结合起来教学,让学生通过讨论交流对比,亲自感受它们之间的异同,挖掘它们之间的内在联系与区别,从而增强学生分析问题、解决问题的能力,省去了许多烦琐的分析和讲解。在教学中准确把握自己的地位。我想真正把自己当成了学生学习的帮助者、激励者和课堂生活的导演,凸显学生的主体地位,体现了生本主义教育思想。

  三、多角度分析问题,提高能力。

  在计算应用题的时候,我通过鼓励学生对同一个问题积极寻求多种不同的解法,拓展学生思维,引导学生学会多角度分析问题,从而在解决问题的过程中培养学生的探究能力和创新精神。另外,改变以往只从例题中草草抽象概括数量关系,而让学生死记硬背,如“是、占、比、相当于后面就是单位1”;“知1求几用乘法,知几求1用除法”等等的做法,充分让学生亲身实践体验,让学生在探究中加深对这类应用题数量关系及解法的理解,提高能力,为学生进入更深层次的学习做好充分的准备。

  四、 有破度有层次地设计练习,提高学生的思维能力。

  教案还精心设计了练习题,通过看图,找等量关系,巩固了学生的分析思路;通过三类题的对比练习,使学生掌握了三类题的异同点,增强了学生的辨析能力,对于学生分析和解题起到了很好的推动作用,使学生无论遇到什么题,都会做到:抓住特点,学而不乱。

分数教学设计12

  教材分析:

  这部分内容是求一个数是另一个数的百分之几的应用题的发展。它是在求比一个数多(少)几分之几的分数应用题的基础上进行教学的。这种题实际上还是求一个数是另一个数的百分之几的题,只是有一个数题目里没有直接给出来,需要根据题里的条件先算出来。通过解答比一个数多(少)百分之几的应用题,可以加深学生对百分数的认识,提高百分数应用题的解题能力。

  学情分析:

  用线段图表示题目的数量关系有助于学生理解题意、分析数量关系。再通过“想”帮助学生弄清,要求实际造林比原计划多百分之几,就是求实际造林比原计划多的公顷数是原计划造林公顷数的百分之几。然后鼓励学生寻找不同的解决方法,这样既开拓了学生的解题思路,又可以发展学生的思维能力。不断的改变题中的问题,使学生进一步加深对这类百分数应用题的认识,看到题里条件和问题之间的内在联系,同时也促进了学生逻辑思维能力的发展。

  教学目标:

  1.认识“求比一个数多(少)百分之几”的应用题的结构特点。

  2.理解和掌握这类应用题的数量关系、解题思路和解题方法。

  教学重点:

  掌握“求比一个数多(少)百分之几”的应用题的解题方法,正确解答。

  教学难点:理解这类应用题的数量关系、解题思路和解题方法。

  教学过程:

  一、复习。

  1、说出下面各题中表示单位“1”的量,并列出数量关系式。

  (1)男生人数占总人数的百分之几?

  (2)故事书的本数相当于连环画本数的百分之几?

  (3)实际产量是计划产量的百分之几?

  2、只列式,不计算。

  (1)140吨是60吨的百分之几?

  (2)260吨是40吨的百分之几?

  3、一个乡去年原计划造林12公顷,实际造林14公顷。实际造林是原计划的百分之几?

  【教学过程说明:通过复习,为旧知识向新知识迁移做好必要的准备:①明确题目中哪个量是单位“1”;②求一个数是另一个数(也就是单位“1”)的百分之几的.数量关系及解题模式。】

  二、探究新知:

  1、出示例3:

  一个乡去年原计划造林12公顷,实际造林14公顷。实际造林比原计划多百分之几?

  2、讨论:

  (1)这道题与上面的复习题相比较,相同的地方是什么?什么发生了变化?

  【教学过程说明:从题目对比中引导学生找出异同点,通过不同点,引入新知,构建新知。】

  板书课题:较复杂的百分数应用题

  (2)出示线段图:

  提问:

  ①题目问题:“实际造林比原计划多百分之几”指的是什么?

  ②应该把谁看作单位“1”?哪一个量和单位“1”量比较?

  ③要求“实际造林比计划多百分之几”可以理解成“一个数是另一个数的百分之几”吗?你能说说?

  ④根据“求一个数是另一个数的百分之几?”用什么方法计算?

  ⑤那要先解决什么问题?

  【教学过程说明:在已有知识的基础上,引导学生理解题意,将问题转化为实际造林比原计划多出的面积是原计划的造林面积的百分之几,弄清题目中的数量关系。】

  (3)学生独立列式解答,教师巡回辅导,注意观察学生列式有没有不同。

  列式解答:

  (14-12)÷12

  =2÷12

  ≈0.167

  =16.7%

  答:实际造林比原计划多16.7%。

  如果发现有不同的解法,引导学生想一想:这道题目还有其它解法吗?学生小组讨论,使学生认识到,原计划造林数量看作单位“1”,例3还可以有以下解法:

  14÷12-1≈1.167-1=0.167=16.7%

  答:实际造林比原计划多16.7%。

  【教学过程说明:在理解题意,弄清数量关系的基础上,让学生独立解题,并鼓励学生用不同方法解,学生可以从中体验解题思路的多样性。】

  (4)独立练习

  我校在创建规范化学校中,队部室进行装修,计划投入0.4万元,实际投入0.5万元,实际投入超过计划百分之几?

  3、思考:如果例3中的问题改成;“原计划造林比实际造林少百分之几?”该怎样解答?

  问:与例三相比较,又什么不同?

  引导学生讨论、分析:

  ①解答百分数应用题时,要弄清楚谁与谁比,比的标准不同,单位“1”也不同。解题时要注意找准谁是单位“1”。

  ②由于比的标准不同,甲比乙多百分之几,乙并不比甲少相同的百分之几。

  学生独立列式解题:

  ①(14-12)÷14②1-12÷14【教学过程说明:鼓励学生

  =2÷14≈1-0.857综合运用所学知识和技能

  ≈0.143=1-85.7%解决问题,发展实践能力

  =14.3%=14.3%和创新精神。】

  答:原计划造林比实际造林少14.3%。

  小结:

  (1)找准单位“1”量,和“哪一个量”与单位“1”量进行比较。(2)依据“求一个数是另一个数的百分之几”进行解答。

  三、巩固练习

  1、分析下列问题,指出所求问题是什么量与什么量比,把哪一个量看做单位“1”。

  (1)今年比去年增产百分之几?

  (2)男生比女生少百分之几?

  (3)一种商品,降价了百分之几?

  2、选择题。

  果园里有荔枝树50棵,苹果树比荔枝树多10棵,苹果树比荔枝树多百分之几?()

  A.50÷10B.10÷50

  C.(50+10)÷50D.(50-10)÷50

  3、做一做

  某工厂九月份用水800吨,十月份用水700吨。十月份比九月份节约用水百分之几?

  四、小结

  解答较复杂的百分数应用题时:

  1.找出谁是单位“1”。

  2.由问题找出谁与谁比(数量关系)。

  3.依据“求一个数是另一个数的百分之几”进行解答。

分数教学设计13

  一、成语引入:

  1、回顾分数,了解学生的起点。

  师:老师今天为大家带来了一个好吃的?猜猜看,是什么?哦,请看电视,是(蛋糕)

  师:你能用一个数表示其中的一份吗?(生答师板书)

  师:关于这个分数,你都知道些什么?

  生1:我知道“4”是分母,“1”是分子,1和4中间那条线叫做分数线。

  二、展开——分数意义的研究

  1、研究,理解单位1。

  (1)探究,用多种材料表示出。

  师:刚才同学们说,可以表示把一个蛋糕平均分成4份,取其中的一份。还可以表示什么?老师为大家提供了几种材料,你们能动手分一分,并且用来表示吗?我们准备的材料有哪些呢?

  课件边展示老师边说:奥,是一张长方形的纸,一米长的绳子一条,画有四个熊猫的图片一张,小圆片12个。请同学们选择你喜欢的材料表示出,然后互相说一说你是怎么表示的。

  师:同学们,你们听清要求了吗?那我们赶紧行动吧!

  小组活动。

  (2)反馈

  师:谁愿意来说说你是怎样来表示的?

  生1:我把一张长方形纸对折,再对折,展开后把其中的一份涂成了红色,就是这个长方形的。

  生2:我把一条绳子两次对折,其中的一份就是这条绳子的。

  生3:我把4只熊猫平均分成了4份,其中的一份(1只)就是这些熊猫的。

  生4:我把12个小圆片平均分成4堆,其中的一堆(3个圆片)就是这些小圆片的。

  (3)归纳

  师:同学们,刚才你们用了这么多的方式表示出了,我们一起来看电视,回顾一下:在表示的过程中,都有什么相同的地方和不同的地方。

  生:我们都是把一个物体平均分成4份的。

  师:是的,我们都是把这些物体平均分成4分表示其中一份的数是。(板书:平均分成4分,表示这样1份的数)

  师:刚才在表示有的过程中,有不同的地方吗?小组的同学可以商量一下。

  小组商量。

  师:谁来说一说?

  生说:有的是把一个物体平均分成4份,比如长方形的纸,1米长的绳子,有的是把一些物体平均分成4份,比如4只熊猫、12个小圆片。

  师:是不是这样?

  师:有的是把一个长方形分成4份,那么一个长方形我们可以把它叫做一个物体。(板书:一个物体)

  刚才我们把这根绳子平均烦人昵称4份,这根绳子的长度是多少?(生:1米)

  像这样1米长的线段,我们把它叫做一个计量单位。(板书:一个计量单位)

  像4个熊猫、12个小圆片,它们都是由许多物体组成的一个整体。(板书:一个整体)

  师:大家看,一个物体、一个计量单位、一个整体,都有什么字?(生说)

  师:“1”是吧,我们就把它通常叫做单位“1”。(板书:单位“1”及大括号)

  师:单位“1”有哪些呢?

  生:一个物体、一个计量单位、一个整体

  师:那么一个物体出了可以是一张长方形的纸外,还可以是什么?(生说)

  师:那一个计量单位还可以是什么呢?

  师:那一个整体还可以是什么呢?

  师:一个物体、一个计量单位、一个整体都叫做单位“1”,那刚才同学们在表示的时候,实际上是把谁平均分成4份?大家一起说。(单位“1”)

  (4)研究几分之几

  师:对我们是把单位“1”平均分成4份,表示这样的1份就是。(板书:把)

  那剩下的部分,如果用分数表示,应该是多少?

  师:表示什么?

  师:老师如果把单位“1”平均分成12份,表示这样7份的数,应该是多少(找生:)

  师:像这样的分数,你能说一个吗?表示什么?

  师:那像这样的分数能写多少个?

  师:这么多的分数,你能根大家说说什么叫分数吗?(生说师补充板书:若干份、几)

  再找生说,并板课题:分数。反问:什么叫分数?再找几个学生回答。

  师:这就是分数的意义。(补充课题)

  师:关于分数的意义,你清楚了吗?下面老师请你在演草纸上写一个分数,并和你的小组同学说说这个分数表示的意义。(生写交流)

  师:谁愿意把你写的分数说一说?(找生说)

  2。理解分数单位

  师:(指黑板上的分数)同学们,你们看,这里这么多的分数,它们的分母有的是4、6、12,那分母都表示什么?(生:把单位“1”平均分的份数)

  师:你们再看看这些分子?又表示什么呢?(生:取这样的几份)

  师:如果把单位“1”平均分成若干份,表示这样的'1份的数,就叫做分数单位。(板:分数单位)

  反问:什么叫做分数单位?(生说)

  师:(指黑板任意一个分数)它的分数单位是多少?它有几个…?

  师:看看,刚才你写的分数,它的分数单位是多少?它有几个这样的分数单位?和你的同位说一说?。

  (三)练习

  师:看来大家对今天知识掌握的不错,下面我就来考考大家?

  1、课件出示:(教材63页第1题)。用分数表示下面各图中的涂色部分。

  师:会吗?(找生口答,并问为什么?说到第四幅图时有2种答案。可以问,还有补充吗?)

  2、教材63页第2题。(略)

  师:刚才这些图大家会用分数表示,接下来这些物体你能用分数表示吗?课件出示(喊声在黑板上做,并请这个学生订正,同学们把答案写在演草本上。)

  3、7题

  师:老师这里还有一些图片,你们看看它们又表示什么意思呢?

  课件出示:

  头部的高度约占身高的(图)

  长江干流约的水体受到不同程度的污染。(图)

  死海表层的水中含盐量达到。

  师:这里的、 、表示什么意思,请你说一说。

  生1:如果把人的身高看作单位1,平均分成8份,一个人头部高度就是这样的1份。

  生2:把长江干流水体所有的水看作单位1,平均分成5份,有3份受到了不同程度的污染。

  生3:这里的表示把死海表层海水看作单位1,平均分成10份,盐就有这样的3份。

  4。请你任选一个分数,并在图上用涂色表示出来。(苹果图)

  师:接下来,老师请每个同学都动手,(课件出示)请你任选一个分数,并在图上用涂色表示出来。请同学们拿出你们的练习卡,开始做。

  师:为什么都是十二个苹果,分得的每一份的数量却不一样呢?

  生说师结:刚才我们都把12个苹果平均分,分的份数不同,每一份的数量也不同。

  (五)拓展

  师:同学们今天这节课表现的非常不错,这节课有多少同学发言?站起来。你能说说发言的同学占全班的几分之几吗?现在发言的人占全班的几分之几?,师:看来分数就在我们身边,你能联系实际举一个有关分数的例子吗?

  师:同学们,这节课我们一起研究了什么?(生说:分数的意义),那你知道分数是怎样产生的吗?课前我让同学们调查了分数的产生及历史,谁愿意上来为大家介绍。

  师:谢有学同学还做成了幻灯片呢!真用心,我们一起看看!

  师:这节课就上到这儿,同学们再见!

分数教学设计14

  教学内容

  教材第60—61页的内容。

  教学目标:

  1、使学生知道分数的产生过程,理解分数的意义,能对具体情景中分数的意义作出解释,能有条理地运用分数知识对生活中的问题进行分析和思考。掌握分数单位的特点。

  2、使学生感受到数学知识是在人类的生产和生活实践中产生的,培养对数学的兴趣,树立学习数学的信心。

  教学重难点

  理解分数的意义。

  教学难点

  对把多个物体组成的一个整体看作单位“1”的理解。

  教具准备

  米尺,课件,几张长方形、正方形的纸。

  教学过程:

  一、创设情境。

  1、测量。

  师生合作测量黑板的.长是多少米?观察用米尺量了几次后还剩下一段,不够一米,还能否用整数表示?(不能)

  2、计算。

  老师把一个西红柿平均分给两个同学,每人分得的西红柿的个数怎样表示?(1/2)

  3、讲述。

  在人们实际生产和生活中,人类在进行测量、分物和计算时,往往不能得到整数的结果,这就需要用一种新的数

分数教学设计15

  教学目标:

  1、引导学生在具体的情景中借助已有的经验理解分数除法的意义并掌握分数除法的计算方法,能正确计算分数除以整数。

  2、通过富有启发性的问题情景和探索性的学习活动,引导学生主动参与、独立思考、合作交流,形成计算技能。

  教学重难点教学重点:分数除法意义的理解和分数除以整数的算法的探究。

  教学难点:分数除以整数的算法的探究。

  教具准备:课件,平均分成5份的长方形纸一张。

  设计意图教学过程特色设计:

  通过富有启发性的问题情景和探索性的学习活动,引导学生主动参与、独立思考、合作交流,形成计算技能

  一、复习

  复习整数除法的意义

  引导学生回忆整数除法的计算法则:已知两个因数的积与其中一个因数,求另一个因数的运算。

  根据已知的乘法算式:5×6=30,写出相关的.两个除法算式。

  二、新授

  (一)初步理解分数除法的意义。

  1、如果将一盒重千克的水果平均分成5份,求其中一份是多少千克,该怎样计算?

  学生试着列出算式。

  引导观察:这几道算式之间有怎样的关系?分数除法是什么样的运算?它的意义和整数除法的意义是否相同?

  2、归纳概括分数除法的意义。

  (二)分数除以整数。

  1、出示例1、引导学生分析并用图表示数量关系。

  问:求每份是这张纸的几分之几,怎样列式?

  2、列式计算。

  学生折一折,算一算。

  3、理清思路。

  学生说思路

  4、总结分数除以整数的计算方法。分数除以整数等于分数乘这个数的倒数。

  三、练习

  第30页做一做

  四、作业练习

  教材P34第1、3、4题。

  五、总结

  今天我们学习了哪些内容?

  板书设计:

  略

【分数教学设计】相关文章:

分数教学设计 02-12

《分数意义》教学设计09-04

分数的意义教学设计04-02

《分数的意义》教学设计04-06

分数的初步认识教学设计12-07

分数的意义教学设计15篇04-03

分数的初步认识教学设计15篇11-02

小学数学分数的意义教学设计09-26

异分母分数加减法的教学设计02-19