圆柱与圆锥教学设计

时间:2024-06-05 13:18:57 教学设计 我要投稿
  • 相关推荐

圆柱与圆锥教学设计

  作为一位杰出的老师,常常要根据教学需要编写教学设计,教学设计是实现教学目标的计划性和决策性活动。那要怎么写好教学设计呢?以下是小编精心整理的圆柱与圆锥教学设计,欢迎大家分享。

圆柱与圆锥教学设计

  一、教学内容

  1.圆柱

  2.圆锥

  二、教学目标

  1.认识圆柱和圆锥,掌握它们的基本特征。认识圆柱的底面、侧面和高。认识圆锥的底面和高。

  2.探索并掌握圆柱的侧面积、表面积的计算方法,以及圆柱、圆锥体积的计算公式,会运用公式计算体积,解决有关的简单实际问题。

  3.通过观察、设计和制作圆柱、圆锥体模型等活动,了解平面图形与立体图形之间的联系,发展学生的空间观念。

  三、编排特点

  1.教材加强了所学知识与现实生活的联系。

  2.加强了学生对图形特征、计算方法的探索过程。

  3.加强了学生在操作中对空间与图形问题的思考,使学生在经历观察、操作、推理、想像过程中认识掌握圆柱、圆锥的特征以及体积的计算方法,进一步发展空间观念。

  四、具体编排

  本单元的内容具体编排如下。

  (一)圆柱

  1.圆柱的认识。

  (1)主题图。

  教材呈现了现实生活中具有圆柱特征的物体的图片,然后从这些实物中抽象出圆柱的立体图形,给出图形的名称,使学生对圆柱的认识经历由形象——表象——抽象的过程。

  (2)例1。

  例1教学圆柱的组成及其特征。并通过快速转动贴有长方形纸的小棒,使学生从旋转的角度认识圆柱,感受平面图形与立体图形的转换。

  教学时,首先应引导学生从整体上把握圆柱的组成,再深入对各个部分的探究。

  (3)例2及“做一做”。

  例2教学圆柱侧面、底面及其之间关系。

  教学时,首先让学生想像侧面展开后的形状,接着让学生剪开侧面,通过操作看到:圆柱的侧面展开后是一个长方形或正方形。然后,再引导学生思考:圆柱展开得到的长方形的长、宽与圆柱的关系,使学生亲历立体图形与其展开图之间的转化。

  “做一做”通过让学生制作圆柱,加深对圆柱特征以及圆柱侧面与底面、侧面与圆柱的高之间的关系的理解。

  2.圆柱的表面积。

  (1)例3。

  例3教学圆柱表面积的概念,探索表面积的计算方法。

  教学时,可将长方体表面积的知识进行迁移,使学生明确圆柱表面积的含义,再指导学生推出表面积的计算公式,其中重点指导如何计算侧面积。

  (2)例4。

  例4教学圆柱表面积计算的实际应用。

  教学时,让学生想像厨师帽是由哪几部分组成的?把实际问题转化为数学问题,再独立进行计算。教师要引导学生理解:根据具体情况,该题的结果用“进一法”取近似值。

  3.圆柱的体积。

  (1)例5。

  例5教学圆柱体积公式的推导。教材先让学生思考:圆柱能否转化成已学过的立体图形来计算体积。然后通过教具演示如何把圆柱转化为一个近似的长方体,并通过观察和推理得出圆柱的体积计算公式V=Sh。

  教学时,可先让学生复习圆面积以及长方体体积的计算公式,再引导学生思考:能否将圆柱转化成一种学过的图形,再计算出它的体积。借助教具直观演示圆柱如何转化为近似的长方体,并引导学生通过想像发现:底面分成的扇形越多,拼起来的形状就越接近长方体,从而导出圆柱体积的计算公式。

  (2)例6。

  例6教学利用圆柱体积的计算解决问题。

  教学时,要引导学生明确:求杯子的容积就是求这个圆柱形杯子可容纳东西的体积,计算方法跟圆柱体积的计算方法一样。

  (二)圆锥

  1.圆锥的认识。

  (1)主题图。

  教材先展示生活中常见的圆锥形实物图,然后从实物图中抽象出圆锥的几何图形,并给出图形的名称——圆锥,使学生经历从具体到抽象的过程。

  (2)例1。

  例1教学圆锥的组成及其特征,并介绍测量圆锥的高的方法。然后,通过让学生快速转动贴有直角三角形纸的小棒,引导他们从旋转的角度认识圆锥。

  教学时,可先复习圆柱的各部分名称及特征,以便通过对比,了解圆锥的组成及特征。圆锥的高的认识是教学难点,教学时要引导学生区分高和母线,并帮助学生了解测量圆锥的高的方法。做转动三角形纸片活动时,可先让学生猜测,再操作。

  “做一做”是制作圆锥,加深对圆锥的认识。

  2.圆锥的体积。

  (1)例2。

  例2教学圆锥体积公式的推导。教材主要按“引出问题——联想、猜测——实验探究——导出公式”四个层次编排。

  教学时,在引出问题环节,让学生体会推导圆锥体积公式的必要性。在猜想环节,引导学生将圆锥的体积与圆柱的体积联系起来。实验探究时,引导学生发现:用圆锥容器装水(或沙土)倒入等底等高的圆柱容器中,刚好倒三次,反之则不存在这样的关系。最后,帮助学生得出在等底等高条件下:圆锥的体积=圆柱的体积=底面积×高,即V=Sh。

  (2)例3。

  例3教学圆锥体积公式的应用。教材给出了圆锥形沙堆的底面直径和高,求沙堆的体积。

  教学时,可先学生自己解决。反馈时,首先让学生明确解决问题的步骤,再帮助学生进一步认识为什么乘,加深对圆锥体积公式的理解。

  五、教学建议

  1.加强数学知识与实际生活的联系,提高运用所学知识解决实际问题的意识与能力。

  这部分内容加强了与生活的联系,也为教师组织教学提供了思路。如,在教学认识圆柱体和圆椎之前,可以让学生收集、整理生活中应用圆柱、圆锥的实例和信息资料,以便在课堂中交流。认识圆柱、圆锥后,还可以让学生根据需要创设和制作一个圆柱或圆锥形的物品,这样,既可激发学生的学习兴趣,又可提高学生运用数学的意识和能力。

  2.让学生经历探索知识的过程,培养自主解决问题的能力。

  本单元加强了对图形特征、计算方法的探索。使学生在经历观察、操作、推理、想像过程中掌握知识、发展空间观念。如圆椎体积的教学,教材创设“如何知道像铅锤这样的物体的体积?”的情境,引导学生通过实验,探究圆锥和圆柱体积之间的关系。教学时,注意提供给学生积极思考,充分参与探索活动的时间和空间。其中圆锥的体积等于与它等底等高的圆柱的体积的,应让学生在经历试验探究过程中获取,改变只通过演示得出结论的做法。

【圆柱与圆锥教学设计】相关文章:

圆锥的体积教学设计01-21

《圆柱的体积》教学设计04-10

圆锥体积教学设计08-02

《圆柱的体积》教学设计15篇06-05

《圆锥的体积》说课稿02-16

圆柱的体积说课稿07-09

圆锥体积说课稿11-13

《圆锥体积》说课稿01-07

《头饰设计》教学设计10-27