《植树问题》教学设计

时间:2024-06-23 10:04:01 教学设计 我要投稿

[集合]《植树问题》教学设计15篇

  作为一无名无私奉献的教育工作者,常常要写一份优秀的教学设计,教学设计要遵循教学过程的基本规律,选择教学目标,以解决教什么的问题。那么教学设计应该怎么写才合适呢?以下是小编精心整理的《植树问题》教学设计,供大家参考借鉴,希望可以帮助到有需要的朋友。

[集合]《植树问题》教学设计15篇

《植树问题》教学设计1

  教学目标:

  1、感受“植树问题”在生活中的广泛应用,并能用此方法解决简单的实际问题。

  2、学会从实际问题中探索规律,找出有效解决问题方法的潜力。

  3、透过生活的事例,初步体会“植树问题”的思想方法。

  教学难点:运用“植树问题”的解题思想解决实际问题。

  教学重点:参与探索并发现“植树问题”的解题规律。

  教学准备:练习纸、课件

  教学过程:

  一、谈话引入,揭示课题

  师:同学们,你明白我们这天要学习什么资料吗?

  生:植树问题

  师:你们是怎样明白的.哦?

  好,这天我们就来研究植树中的问题。植树问题中蕴涵着许多搞笑的数学问题。你们喜不喜欢?

  板书课题:植树问题

  出示学习目标:

  二、操作感悟,探究规律

  1、请看大屏幕:

  (1)想一想:

  那里有一条线段,我们把它看作一条路,这条路长20米,如果要在这条路上种树,请同学们想一想,你们还要了解什么信息?

  ①每棵树之间相隔几米?(间隔)②是不是两端都种呢?……看来同学们思考问题还很全面呢!

  (2)猜一猜:

  如果告诉你每隔5米种一棵,种几棵比较适宜?

  生1:5生2:4生3:3

  (3)画一画:

  师:那么,有什么办法验证你的想法?(画图)

  哦,你能不能用简单的示意图把你的想法简单地画出来呢?

  (教师先介绍画树的方法,学生画图,教师巡视)看谁画得又对又快。

  2、展示、汇报

  ①选一学生的示意图展示、汇报。

  两端都种:电脑展示,学生说出自己的想法,教师把学生画的示意图画在黑板上

  ②选另一学生的示意图展示、汇报。

  只种一端:电脑展示,学生说出自己的想法,教师把学生画的示意图画在黑板上

  ③选另一学生的示意图展示、汇报。

  两端都不种:电脑展示,学生说出自己的想法,教师把学生画的示意图画在黑板上

  3、写算式

  师:我们刚才用图来表示的思维过程能不能用个算式来表示?

  ①只种一端:你是怎样想的呢?谁能来说一说。

  20÷5=4(段)=4(棵)

  棵数和段数一一对应。

  ②两端都种:20÷5+1=5(棵)

  20÷5表示什么?加“1”是什么意思?

  ③两端都不种:最后一种用算式怎样表示呢?20÷5-1=3(棵)

  每间隔5米是这样的,假如每间隔是2米,分别能种几棵呢,列出算式(不要画图了,要画就画在脑子里)

  20÷2+1=11(棵)20÷2=10(棵)20÷2-1=9(棵)

  4、小组讨论:

  我们刚才在这条20米的路上,每间隔5米和每间隔是2米分别种多少棵树都做了,仔细看看,你们有什么想说的?先独立思考,想好后再和同学交流,然后向老师汇报。(告诉你总长度、间隔长,要你求种多少棵树,是否有简单的方法?)

  5、教师引导学生总结:

  ①只种一端:棵数=段数

  ②两端都种:棵数=段数+1③两端都不种:棵数=段数—1

  那么段数(间隔数)怎样求呢?

  所以解决植树问题,首先要确定它是怎样种的?是两端都种、只种一端还是两端都不种,再分别根据以上数量关系来解决就能够了。

  6、象这样,这天用植树问题这样的思考方式来思考的,平时生活当中的问题还是否有?(摆花、锯木头、站队……)

  师:老师也收集了一些图片,看看那里有植树问题吗?

  (根据学生的回答教师出示课件,并说明为什么属植树问题)

  三、活学活用,解决问题

  师:我们刚才透过猜测、验证、推理,摸索了植树问题中的一些规律,我们能不能应用这些规律来解决生活中的实际问题呢?

  (一)基本练习:我能行!

  1.从头至尾栽了10棵树,那么有个间隔。

  2.一根木头长8米,每2米锯一段。一共要锯次。

  好,两道题都做对的对老师笑一笑。哇!我从同学们灿烂的笑脸中读出了自信,读出了自信!老师为你们加油!

  (二)综合练习:我挑战!

  1、林木工人沿公路一侧植树,每隔6米种一棵,一共种了36棵。从第1棵到最后一棵的距离有多远?

  ①6×36=216(米)

  ②6×(36-1)=210(米)

  ③6×(36+1)=222(米)

  2、一根木头长10米,要把它平均分成5段。每锯下一段需要8分钟,锯完一共要花多少分钟?

  ①10÷5=2(米)2×8=16(分钟)

  ②5×8=40(分钟)

  ③(5-1)×8=32(分钟)

  3、5路公共汽车行驶路线全长12千米,相邻两站的距离是1千米。一共有几个车站?

  ①12÷1=12(个)

  ②12÷1+1=13(个)

  ③12÷1-1=11(个)

  (三)拓展练习:我智慧!

  四、再次梳理,总结提高

  这天我们学习了什么资料?你有什么收获?你有什么感受?

《植树问题》教学设计2

  【教学目标】

  知识目标:

  1、利用学生熟悉的生活素材、通过动手操作等实践活动,让学生感悟间隔数与棵数之间的关系。

  2、让学生自主探索、讨论、交流,使学生发现并理解植树问题(两端要种)的解题规律,并利用规律解决一些实际问题。

  能力目标:

  1、让学生经历分析、思考、解决问题的整个探究过程,并从中学习一些解决问题的方法和策略。

  2、通过探索间隔数与植树棵数之间的规律,初步体会化复杂为简单和一一对应的数学方法。

  情感目标:

  培养学生的分析意识,养成良好的交流习惯,感悟日常生活中处处有数学,体验学习的成功喜悦。

  【教学重点】

  教学重点:引导学生发现棵数与间隔数的关系。

  【教学难点】

  理解间隔与棵树之间的规律并运用规律解决问题。

  【教学过程

  一、激趣导入,谜语导入激发学生的兴趣。

  同学们!你们喜欢猜谜游戏吗?老师说一个谜语让同学们猜一猜,看谁能最先猜出来。

  一颗小树五个叉

  不长叶子不开花

  能写会算还会画

  天天干活不说话

  谜底:(手)

  出示课件,让学生举手回答谜底,并作表扬或鼓励。

  1、师:每位同学都有一双灵巧的手,他不但会写字、画画、干活,在他里面还藏着有趣的数学知识,你想了解它吗?请举起你的右手。(五指伸直、张开)师:张开的五指中有了一些空隙。数学中我们把这个“空隙”叫“间隔”。同学们看一看,3根手指中有几个间隔?那么4根手指呢?5根呢?

  在我们的.生活中,像这样的例子很多很多,比如路灯、公路边上的树和摆放的花盆,它们之间都有间隔。生活中的“间隔”到处可见,你能举几个例子吗?它们都有一个共同的特征,都有间隔,那么在数学上我们把研究与间隔有关的问题叫做植树问题,今天我们就一起来研究它。

  二、构建模型

  1、了解植树问题中棵数与间隔数之间的关系

  师:在植树问题中,有几种情况:一种是两端都栽,一种是只栽一端,还有一种是两端都不栽。今天这节课我们只学习“两端都栽”的情况(课件出示三种情况)。板书:两端都栽。那么两端都栽时,棵数与间隔数之间有什么关系呢?(出示课件,板书棵数、间隔数)当只有3棵树时,它们之间有几个间隔呢?4棵树时有几个间隔呢?5棵树呢?现在同学们想象一下,如果有10棵树呢?50棵树呢?100棵树呢?那么你们发现了棵数与间隔数之间有什么关系呢?(棵数比间隔数多1,间隔数比棵数少1)那谁会用一个等式来表示一下呢?(棵数=间隔数+1,间隔数=棵数-1)(出示板书)

  3、利用模型解决问题

  1、出示招聘启示:我们学校将对校园进行绿化,特聘请校园设计师设计一份植树方案,择优录取。同学们想成为这名设计师吗?出示设计要求:在操场边上,有一条20米长的小路,学校计划在小路的一边种树,每隔5米栽一棵(两端都栽),一共要栽几棵树?

  (1)说说从题中你知道了哪些数学信息?(让学生举手回答)

  (2)判断:下面哪种情况是一边种树呢?下面哪幅图是两端都栽的情况呢?(课件出示)

  (3)分析题意。

  “全长20米”是指小路的总长(板书:总长);“一边”是小路的一侧,指左边或右边;“每隔5米栽一棵”是每两棵树之间的距离,简称“间距”(板书:间距)。“两端要栽”指起点与终点处都要栽。

  (4)算一算一共需要多少棵树苗?(学生独立完成)

  (5)学生汇报交流。

  (6)反馈答案:

  方法1:20÷5=4(棵)

  方法2:20÷5=4(段)4+1=5(棵)

  到底哪一个是对的呢?大家都认为这种方法是正确的,那么算式中的“20”表示什么呢?“5”表示什么?“20÷5=4(个)”又表示什么?(板书:间隔)为什么“+1”?(两端要栽,它比间隔多1)“4+1=5(棵)”表示什么?(植树棵树)这其实就是运用了“间隔数+1=棵数”这个规律。(课件演示分析过程)

  谁能够完整地说一说这个算式的意思?

  2、试一试。师:如果老师把题目改一改,看看谁还会?课件出示例题1:同学们在全长100米的小路一边植树,每隔5米栽一棵(两端要栽)。一共需要多少棵树苗?

  (1)和刚才这题比较,你想说什么?

  (2)学生独立列式并汇报。

  3、巩固新知师:恭喜大家,顺利完成了任务!你们还想接受新一轮的挑战吗?

  (1)出示第一关:说一说。让学生自己读题,抢答。

  (2)同学们真棒,现在老师想请同学们在小组内把我们今天学的知识整理一下,看哪一个小组最先完成。(老师课件出示题目,学生完成手里的学习单)学生完成后汇报交流(投影学生完成的情况,并请学生说说自己是怎样想的)

  (3)拓展练习。同学们真棒,这两道关卡都没有难住同学们,现在还有最后一道关卡,如果你能闯过最后一关,那今天这节课就要给同学们打100分了。课件出示:园林工人沿公路一侧植树,每隔6米种一棵,一共种了36棵。从第1棵到最后一棵的距离有多远?

  (1)学生独立阅题,说说这个题目中又有哪些数学信息呢?

  (2)这个题目和前面做的两题有什么不同呢?(①前面那题告诉路的长度,而这题求路的长度。②前面那题求植树棵树,而这题已经告诉了植树棵树。)

  (3)在做前面那题时,我们是先求什么的?(间隔数)那在这个题目中,我们应该先算什么?

  (4)学生独立解答并汇报:

  (5)板书学生的各种答案,你有什么看法?说说理由。生列式:36-1=35(个)35×6=210(米)

  (6)擦去错误答案,师追问:“36”表示什么意思?再“-1”表示什么?(板书:间隔数)这其实就是运用了“棵数-1=间隔数”这个规律。再“×6”又是什么意思?

  (7)有谁听懂了这个算式的意思,说给大家听一听?

  四、回顾小结

  这么难的题目让你们解答出来了,看来今天收获一定不少?谁来说说你今天都有哪些收获?

  板书设计

  植树问题——两端都种

  棵数=间隔数+1

  间隔数=棵数-1=总长÷间距

  总长=间隔数×间距

  间距=总长÷间隔数

《植树问题》教学设计3

  教学目标:

  一、知识与技能性:

  1、利用学生熟悉的生活情境,透过动手操作的实践活动,让学生发现间隔数与植树棵数之间的关系。

  2、能够借助学具,利用规律来解决简单植树的问题。

  3、透过小组合作、交流,使学生能理解间隔数与植树棵数之间的规律。

  二、过程与方法:

  1、进一步培养学生从实际问题中发现规律,应用规律解决问题的潜力。

  2、渗透建模的思想,培养学生由具体到抽象的转化思想。

  3、培养学生的合作意识,养成良好的交流习惯。

  三、情感态度与价值观

  1、透过实践活动激发热爱数学的情感,感受日常生活中处处有数学、体验学习成功的喜悦。

  2、渗透爱绿、护绿的德育教育。

  教学重、难点:

  引导学生在观察、操作和交流中探索并发现间隔数与棵数的规律,并能运用规律解决实际问题。

  教学准备:教具、学具、课件

  教学过程:

  一、创设情境,导入新知:

  (出示光头强砍树的画面)

  师:孩子们,你们喜欢光头强吗?

  生:不喜欢

  师:为什么呢?

  生:因为他乱砍树,破坏森林(让学生畅所欲言,对学生进行爱绿、护绿的德育教育)

  (出示熊大、熊二抓光头强的画面)

  师:它们也不喜欢呢!瞧、

  (出示“保护森林,熊熊有责”)

  师:其实,保护森林,不仅仅仅是熊的职责,更是——

  生:人的职责

  师:那我们就应说——

  生:“保护森林,人熊有责”

  师:这天,就让我们跟熊大、熊二一齐来植树吧!

  二、建模探究,总结方法

  1、探究“两端都植”的状况

  出示:熊大、熊二要在小路的一侧植树(两端都植)

  引导孩子们认识“一侧”“两端都植”。

  在教具上,引导孩子们理解并板书“总长”“间隔长”“间隔数”和“棵数”。

  游戏:小组植树比赛

  师:听我口令,看哪个小组行动最快!

  师:两端都植,间隔长为5厘米时,间隔数和棵数分别是多少?

  师:间隔长为10厘米呢?15厘米呢?

  师:休息会儿,看看总长、间隔长、间隔数和棵数它们之间有什么关系呢?

  引导孩子,发现规律:总长÷间隔长=间隔数

  间隔数+1=棵树(强调“两端都植”)

  出示练习巩固:熊大、熊二要在长100米小路的一侧,每隔5米栽一棵树(两端要植),需要多少棵树呢?

  师:你能帮忙解决这个问题吗?赶紧做到你的练习纸一中

  100÷5=20(个)

  20+1=21(棵)

  2、探究“一端植”的状况

  师:突然,发现路的`一端是光头强家呢!(引导学生说“只能植一端”)

  师:也是这个规律吗?赶紧在你的60厘米小路的最左端安上光头强家,填一填学生报告表格一,并填出你们的发现。

  (小组内分工合作:栽树、填表)

  学生汇报:总长÷间隔长=间隔数

  间隔数=棵树(强调“一端植”)

  出示练习:熊大、熊二在长100米的小路的一侧栽树,每隔5米植一棵树,(一端是光头强家),需要多少棵树呢?(那两侧呢?)

  师:你能帮忙解决这个问题吗?赶紧做到你的练习纸二中

  100÷5=20;(20×2=40)

  3、探究“两端不植”的状况

  师:这时,又发现路的另一端是吉吉国王的猴山呢!

  (引导学生说“两端都不植”)

  师:那到底需要多少棵树呢?请用你喜欢的方式表示出来吧!

  学生汇报:总长÷间隔长=间隔数

  间隔数-1=棵数(强调“两端不栽”)

  出示练习:熊大、熊二在小路的一侧植树,每隔5米植一棵树,总共植了20棵(一端是光头强家,另一端是吉吉国王家),这条路多长呢?

  师:你能帮忙解决这个问题吗?赶紧做到你的练习纸一中

  (20+1)×5=105(米)

  师:熊大、熊二就这样一条路一条路的植树,有一天它们又想在一个圆形的池塘身旁植树。

  出示:熊大熊二要在圆形池塘周围植树。池塘的周长是120米,如果每隔10米植一棵,需要多少棵树呢?(引起孩子们思考)

  师:这种状况,又会是什么状况呢?我们下节课之后研究。

  师:这就是我们这天研究的不同状况的植树问题。(板书课题:植树问题)

  三、开放练习,应用方法。

  师:其实,生活中有很多跟植树问题类似的问题呢,比如xxx(引导孩子来说)

  马路问题、楼梯问题、钟表问题、公交站问题、队列问题、锯木头问题,

  四、小结:

  出示:“完美生活,从我做起”(播放欢快音乐)

  师:同学们,说说你们的收获吧!

《植树问题》教学设计4

  教学内容:

  人教版《义务教育课程标准实验教科书数学》四年级下册第117、118页例1、例2。

  教学目标:

  1.利用生活中的问题,通过动手操作的实践活动让学生发现分的段数与植树棵数之间的关系,并能利用规律来解决简单植树的问题。

  2.进一步培养学生从实际问题中发现规律,应用规律解决问题的能力。

  教学重难点:

  1.利用生活中的问题,通过动手操作的实践活动让学生发现分的段数与植树棵数之间的关系,并能利用规律来解决简单植树的问题。

  2.培养学生从实际问题中发现规律,应用规律解决问题的能力。

  3.提高解决问题,让学生感受日常生活中处处有数学,激发热爱数学的情感。

  教学、具准备:

  课件、表格、尺子等。

  教学过程:

  一、教学“间隔”

  1.教学“间隔”的含义。

  师:同学们,在我们的身边到处有数学。请你们伸出一只手张开手指,仔细观察,你看到了什么?(5个手指,4个空)这4个“空”也可以说成4个“间隔”,5个手指之间有4个间隔,那4个手指之间有几个间隔?3个手指之间呢?(请生在自己的手上指一指)2个手指之间呢?(全班一起找)通过刚才我们找手指数和间隔数,你发现了什么?谁来说说。(手指数比间隔数多1或间隔数比手指少1。)

  2.引入植树问题的学习。

  师:你们真聪明!发现了手指数与间隔数之间的关系,像这类问题其实就是——植树问题(揭示课题)。今天这节课我们就一起来研究植树问题。

  二、自主探究 找出规律

  1.课件出示:为迎接2008奥运会,北京市城市规划局准备在长100米的迎宾道一侧栽树,每隔5米栽一棵(两端都栽)。一共需要多少棵树苗?

  师:我们一起来读读题。谁知道每隔5米栽一棵是什么意思?那共需多少棵树苗,谁来猜一猜?

  预设:学生可能大多数对得到20棵。

  师:你们的猜测正确吗?下面我们就一起想办法来验证一下。但是100米这个数字有点大,不好验证,怎么办呢?在遇到比较复杂的问题是我们可以先用比较简单的例子来验证。假设路长只有20米,每5米栽一棵(两端都栽),要栽几棵呢?

  师:下面就请小组同学一起想办法验证一下你们的猜测是否正确?

  全班交流汇报。(重点让用线段图来验证的小组来说明理由。)

  师:这个小组的同学真会想办法,他们用一条线段表示这条小路,平均分成4份,这时出现了几个间隔和几个间隔点?

  生:4个间隔和5个间隔点。也就是把一条小路平均分成4份后,如果两端都要栽树的话,共要栽几棵?(5棵)20÷5不是等于4吗?怎么是5棵呢?多的这一棵是怎么来的?

  师:如果每隔4米栽一棵、每隔2米栽一棵又需要栽多少棵树苗呢?请小组同学一起讨论一下,并将你们解决的方法写在练习纸上。

  根据学生的回答,师填写表格:

  总

  长(米)

  每两棵树之

  间的距离

  (每段长)

  棵

  数

  间隔数

  (段 数)

  20

  全班观察表格寻找规律。

  师:同学们非常能干,通过猜测、讨论、验证发现了植树问题中一个非常重要的规律,那就是在一条路上植树,如果两端都要栽的话,栽树的棵数比平均分的份数也就是间隔数多1。(板书:棵数=间隔数+1。)

  师:对得到的这个规律有没有不同意见?

  三、巩固练习

  师:现在我们用得到的.这个规律来验证一下你开始的猜测正确吗?

  (1)基础练习。

  师:请看题目,谁愿意来说一说?

  A1. 在长100米的迎宾道一侧栽树,每隔5米栽一棵(两端都栽)。一共需要多少棵树苗?

  A2. 如果是每隔10米栽一棵呢?(口答)

  B.师:同学们真能干!其实在我们的生活周围存在许多类似的植树问题。这是陈老师家乡重庆的鹅公岩大桥,想知道这座桥上有多少盏路灯吗?

  课件出示:大桥全长1420米,大桥的两侧每隔10米安装了一盏路灯。一共安装了多少盏路灯?

  C.这是我们重庆的轻轨列车,陈老师每天就坐轻轨列车回家。

  课件出示:从学校到老师家一共有14个站,每相邻两个站之间的距离平均是1千米,你知道陈老师的家离学校大约有多少千米吗?

  (2)拓展练习。

  师:老师的家乡重庆是一个美丽的城市,在重庆有一个解放碑。想听听它的钟声吗?

  课件出示解放碑的大钟及题目。

  解放碑的大钟5时敲响5下,8秒钟敲完。12时敲响12下,需要多长时间呢?

  师:请同学们独立的在练习本上完成。

  小结:同学们真棒!不仅能通过自己的观察、思考找到植树问题中当两端都栽树时棵数=间隔数+1,而且还运用规律解决了生活中的实际问题。

  四、数学文化

  介绍二十棵树植树问题:有20棵树,若每行四棵,问怎样种植,才能使行数更多?

  五、全课总结

  1.通过这节课的学习你有什么收获?

  2.其实植树问题里还有许多有趣的知识,如植树时有时需要一头栽一头不栽,在圆形的球场一周栽树以及围棋盘上摆棋子的问题等(课件图片展示),这些都需要同学们在以后的学习中开动脑筋,积极思考才能找到解决问题的好方法。

《植树问题》教学设计5

  教学内容:

  《义务教育教科书.数学》五年级上册p106—107。

  教材分析:

  “植树问题”是义务教育课程标准实验教科书四年级下册“数学广角”的内容,教材将植树问题分为几个层次:两端都栽、两端不栽以及封闭图形(方阵问题)等。其侧重点是:在解决植树问题的过程中,向学生渗透一种在数学学习上、研究问题上都很重要的数学思想方法——化归思想,通过现实生活中一些常见的实际问题,让学生从中发现一些规律,抽取出其中的数学模型,然后再用发现的规律解决生活中的一些简单实际问题,同时使学生感悟到应用数学模型解题所带来的便利。本课的教学,并非只是让学生会熟练解决与植树问题相类似的实际问题,而是把解决植树问题作为渗透数学思想方法的一个学习支点。借助内容的教学让学生从中发现一些规律,抽取出其中的数学模型,然后再用发现的规律来解决生活中的一些简单实际问题。

  学情分析:

  学生已经学习了除法的含义、《表内除法》、《除数是一位数的除法》、《除数是两位数的除法》以及用线段图来解决问题的方法。从学生的思维特点看,四年级学生仍以形象思维为主,但抽象思维能力也有了初步的发展,具备了一定的分析综合、抽象概括、归类梳理的数学活动经验。这部分内容放在这个学段,说明这个内容本身具有很高的数学思维和很强的探究空间,既需要教师的有效引领,也需要学生的自主探究。

  设计理念及思路:

  “数学广角”系统而有步骤地向学生渗透数学思想方法,尝试把重要的数学思想方法通过学生可以理解的简单形式,采用生动有趣的事例呈现出来。

  解决植树问题的思想方法是实际生活中应用比较广泛的数学思想方法。植树问题通常是指沿着一定的路线植树,这条路线的总长度被平均分成若干段(间隔),由于路线不同、植树要求的不同,路线被分成的段数(间隔数)和植树的棵数之间的关系就不同。“植树问题”的本质是对应问题,只要明确了“间隔”与“树”这两者之间的对应关系,突出“一一对应”的思想,再以此为基础并通过适当变化就可以应对各种变化了的情况。

  为了更好的落实教学目标,本节课在教材的处理上我作了如下调整,把原例题中的路长“100米”改为“20米”,把“两端要栽”这个条件去掉了。数据改小有利于学生思考,也便于学生动手操作,但并不影响我们要研究的数学问题。“两端要栽”这个条件去掉了,旨在让学生在一个开放的情境中,通过动手操作、演示用一一对应的思想方法去探究植树问题中间隔数与棵数的关系。再通过展示现实生活中一些常见的实际问题,让学生从中发现一些规律,抽取出其中的数学模型,然后用发现的规律尝试用数学的方法来解决实际生活中的简单问题,从而使学生建立起深刻、整体的表象,提炼出植树问题解题思想方法。

  教学目标:

  1.知识技能。

  借助直观,通过间隔和数的对应,理解间隔数与植树棵数的规律,建立不同情境下植树问题的数学模型。

  2.数学思考。

  (1)学生在参与观察、动手操作、比较等数学活动中,发展解决问题的意识和能力,能清晰地表达自己的想法。

  (2)学会独立思考,体会数形结合、一一对应、化归、建模等数学思想方法。

  3.问题解决。

  (1)能运用所得到的规律解决实际问题。

  (2)能和他人合作交流。

  4.情感态度。

  (1)能积极参与数学活动,对数学有好奇心和求知欲。

  (2)在数学学习过程中,体验获得成功的乐趣,建立自信心。

  (3)感受数学在日常生活中的广泛应用,体验植树问题的价值和作用。

  教学重、难点

  重点:探究棵数与间隔数之间的关系,运用一一对应,建立植树问题模型,会应用植树问题的模型解决一些相关的实际问题。

  难点:应用植树问题的模型灵活解决一些相关的实际问题。

  教学准备

  多媒体 笔 直尺

  教学方法

  讲授、演示、讨论交流、操作练习等

  教学过程:

  一、课前互动、引出课题

  师:想让自己的头脑变得更聪明的同学请以最佳的状态坐好,都有这个美好的愿望,光说不练可不行。这节课就让我们走上思维的道路,一起去迎接新的挑战吧。请看老师给你们带来的课前思维训练题:

  1.一根木头长10米,要把它平均锯成9段,需要锯几次?

  2.四年级在三楼,每上一层要走20个台阶,一共要走多少个台阶才能到三楼?(每层台阶数相同)

  师:锯木头和上楼梯是生活中常见的现象,我们把它叫做“植树问题”,今天这节课我们就一起来研究有关植树问题的知识。(板书课题:植树问题)

  二、探索规律、建立模型

  (一)创设情境,出示问题。

  园林工人打算在一条长20米的笔直小路一边植树,请同学们按照每隔5米栽一棵的要求帮忙设计一份植树方案,并说明理由。

  师:从这份要求上,你能获得哪些信息?

  (预设:20米长的小路,一边,每隔5米栽一棵)

  师:每隔5米是什么意思?

  (预设:两棵树之间的距离是5米,每两棵树的距离都相等)

  (二)动手操作,设计方案

  同桌二人合作,摆一摆或画一画

  (三)交流汇报,展示作品

  师:大多数同学已经完成了,谁来汇报(汇报后展示)

  (预设:我们小组设计栽了5棵树。在一条长20米的路上,开始先栽一棵,然后隔5米栽第二棵,再隔5米栽第三棵……再隔5米栽第五棵。)

  师:不错,老师期待你更精彩的表现,他们设计了5棵,还有不同方案吗?

  (预设:我们小组设计栽了4棵树,开头的地方没栽,先隔5米栽第一棵……隔5米栽第4棵。)

  师:为什么开头的地方不栽?

  (预设:因为有的.时候在一条路的一头可能会有障碍物,所以不能栽。)

  师:你想得真周到,真是个既细心又爱动脑的孩子。是呀,如果在路的一端有建筑物就只能在另一端栽了!同学们的设计真精彩啊!还有不同的设计方案吗?

  (预设:如果路的两端都有建筑物,可以栽3棵。)

  师:你回答的太棒了,老师感到震撼!对,有的时候在路的两端都会有障碍物,这个时候路的两端就不能栽树。

  (四)比较方案,探究规律。

  1.间隔数与总长、间距的关系。

  (1)出示植树的三种情况,学生观察相同点。

  师:同学们真有创造力!短时间内根据要求设计出了三种不同的方案,你们都有资格成为一名设计师了。现在请用你们雪亮的眼睛看一看,这三种方案中相同的地方是什么?

  (2)学生汇报,教师板书。(总长、间距、间隔数 20 5 4)

  (3)间隔数与总长、间距的关系。

  师:这三种方案的间隔数都是几?能用一个算式来表示吗?(20÷5=4(个))在这个算式中,每个数字分别表示什么?

  你们能说说怎样求间隔数吗?(总长÷间距=间隔数)

  问:要想知道有几个间隔,必须要知道哪两条信息?(总长、间距)

  师:接下来,咱们来比一比,谁的反应快?(如果一条小路长100米,每隔10米栽一棵树,一共有多少个间隔呢?如果每隔20米栽一棵树,一共有多少个间隔呢?)

  2.间隔数与植树棵数之间的关系。

  (1)学生观察不同点,教师讲解三种方法的名称,同桌交流棵树和间隔数的关系。

  问:刚才咱们找到了这三种方案的相同点,请同学们再用你们睿利的目光观察,不同的地方又是什么呢? (预设:植树的棵数不同、植树的方法不同)

  学生汇报后,教师讲解三种方法的名称。

  师:看来虽然间隔数相同,但是不同的植树方法,植树棵数是不同的。我们就来研究在不同的植树方法中,间隔数与植树棵数之间存在着怎样的关系。赶紧用你们的慧眼去发现吧,可以把你的发现和同桌分享。

  (2)汇报交流。(板书)

  (3)演示,明白原因。(演示:树与间隔之间的一一对应关系。)

  3.小结:解决植树问题方法

  师:会求植树的棵树吗?这三种关系可是个宝贝,你们想得到它吗?那请闭上眼睛,打开你的大脑主机,我要把这个宝贝输入你的大脑了,千万别开小差啊,出现死机现象那可麻烦啦,准备好了吗?我要开始传宝贝了……好,收到了宝贝的同学请用最美的姿势坐好。

  三、巩固应用、内化提高

  师:既然宝贝已经保存在你的大脑里了,那可不能让它天天睡懒觉,得常常拿出来发挥一下它的神奇作用。下面这几道题就需要它大显身手。请看:

  1.有一条500米的石子路,在石子路的一侧每隔5米栽一棵(只栽一端),需要准备几棵树?

  2.同学们在全长1000米的小路一边植树,每隔8米栽一棵(两端都栽)。一共需要多少棵树苗?

  3.大象馆和猩猩馆相距60米。绿化队要在两馆间的小路一侧栽树,相邻两棵树之间的距离是3米。一共要栽几棵树?

  4.在一条全长180米的街道两旁安装路灯,(两端都要安装),每隔6米安一座。一共要安装多少座路灯?

  四、课堂总结、拓展延伸

  师:今天我们一起研究了有关“植树的问题”,不过,我有一个疑问想请大家帮我解释一下:植树问题就仅仅是指植树这一种现象吗?

  生举生活中的其他例子,锯木头、上楼梯、安装路灯……

  回到大脑思维体操的题目,进一步理解每一个算式表示的意思。

  师:第一题锯木头属于哪种情况,第二题又属于哪一种情况呢?

  师:今天这节课,你觉得你最大的收获是什么?

  师:植树问题在我们的生活中无处不在,它美化着我们的生活,美化着我们的校园。其实在“植树问题”中,“植树”的路线可以是一条线段,也可以是一个封闭图形,比如正方形、长方形或圆形等。有兴趣继续探索吗?请利用本节课学到的方法回家和家长探讨。

  板书设计:

  (一条线段上的)植树问题

  方法 间隔数 棵数 关系

  总长 ÷ 间距

  两端都栽 4 5 棵数=间隔数+1

  只栽一端 4 4 棵数=间隔数

  两端不栽 4 3 棵数=间隔数-1

《植树问题》教学设计6

  教材分析

  《植树问题》它原本属于经典的奥数教学内容,新课程教材把它放在了“数学广角”中让所有的学生学习,说明这一教学内容本身具有很高的数学思维含量和很强的探究空间,既需要教师的有效引导,也需要学生的自主探究。

  学情分析

  从学生的思维特点来看,四年级学生仍以形象思维为主,但抽象逻辑思维能力也有了初步的`发展,具备了一定的分析综合、抽象概括、归类整理的数学活动经验。因此,在本课的设计中,解题不是主要的教学目的,主要的任务是以“植树问题”为载体,让学生经历猜想、验证、推理等数学探究的过程,寻找解决问题的策略,抽取数学模型,体验数学思想方法在解决问题中的应用。

  教学目标

  1、通过探究发现一条线段上两端要种的植树问题的规律。

  2、使学生经历和体验“复杂问题简单化”的解题策略和思想方法。

  3、让学生感受数学在日常生活中的广泛应用,尝试用数学的方法来解决实际生活中的简单问题,培养学生的应用意识和解决实际问题的能力。

  教学重点和难点

  教学重点:理解棵数与间隔数之间的关系。

  教学难点:应用植树问题的数学模型来灵活解决一些相关的实际问题。

《植树问题》教学设计7

  教学目标:

  1、经历将实际问题抽象成植树问题模型的过程,运用“一一对应思想”掌握种树棵数和间隔数之间的关系。

  2、通过观察、比较、概括等数学活动,理解植树问题、排队问题等实际问题都有着相同的数学结构,渗透“化归思想”,能够运用总结出的思想、方法灵活地解决简单的实际问题,发展思维能力。

  3、感悟建构数学模型是解决实际问题的重要方法之一。

  教学重难点:理解植树问题、排队问题等实际问题都有着相同的数学结构,能够应用总结出的思想、方法解决一些简单的实际问题。

  教学过程:

  1、猜

  T:这节课我们就一起研究植树问题。请大家看屏幕:这里有一条线段,我们把它看成一条路,这条路长20米。如果要在这条路上种树,请同学们想一想,你还需要了解什么信息?

  S:每棵树之间的距离是几米?是不是两端都种?(随即揭示植树三种情况)

  T:同学们考虑问题还很全面,确实我们需要知道一个最起码的条件,就是树和树之间的间隔是多少米。如果告诉你们每隔5米种一棵,请同学们想一想在这条路的一边种树,可以种几棵?

  S:可以种5棵,4棵,3棵。

  2、画

  T:能不能把你的想法用简单的示意图画一画呢?请同学们拿出老师课前发的练习纸,把你的想法画在练习纸上。开始吧!

  S独立画图,教师巡视指导。

  T:画好了的请举手。我们找同学说说你是怎样画的。

  顺学而导,学生交流时教师只需提醒学生检验是不是每隔5米种一棵?总长是不是20米?当学生交流种4棵的想法时,教师可让学生说说有不同的种法吗?交流这两种种法的不同。(同样种4棵树,想法一样吗?)

  3、找规律

  T:仔细观察这三种植树情况,虽然他们种的棵数不同,但是他们有一个相同的'地方,你发现了吗?

  S:他们都是把20米的路平均分成了4段。(4段也可以说是4个间隔)

  T:你的这个发现特别有价值,谁再对照图说怎么都分成4段了呢?

  T:怎么求这个段数,能用式子表示一下吗?

  S:20÷5=4(个)(能解释一下吗?每隔5米种一棵,20米里面有几个5米就可以分成几段)

  T:我们解答这样的问题,首先要知道这条路被分成几段,我们来观察一下,这三种情况棵数和间隔数之间有什么关系?同桌之间先交流一下。

  S:汇报T强调在哪种情况下······(课件演示,结合学生回答随机演示多1和少1的原因)

  4、列算式

  T:能不能根据我们刚才发现的规律把植树的棵数用算式表示出来呢?

  S:独立列算式汇报说理由。

  T:每间隔5米种一棵,刚才这三种情况都出来了。如果是每隔2米种一棵,能种几棵?有几种种法呢?列出算式。

  5、解决问题

  T:老师这里有几个生活中的问题,看你们能不能运用这些知识来解决这些问题呢?

  (1、同学们要在全长100米的小路一边植树,每隔5米栽一棵(两端要载)。一共需要多少棵树苗? 2、大象馆和猩猩馆相距60米。绿化队要在两馆间的小路两旁栽树,相邻两棵树之间的距离是3米。一共要载多少棵树?

  3、5路公共汽车站行驶路线全长12千米,相邻两站的距离是1千米。一共有几个车站?)

  S列式解答全班交流

  6、拓展延伸

  T:生活当中有没有类似植树问题的现象?或者是用植树问题这样思考方式思考的?

  S:剪绳子,锯木头,摆花

  T:老师这里就有这样一个问题,请看——一根木头长10米,要把它平均分成5段。每锯下一端需要8分钟,锯完一共要花多少分钟?(有时间就解答,时间到就留作作业。)

  7、总结

  T:这节课学得怎么样?

《植树问题》教学设计8

  教学目标:

  (1)在观察、操作及交流活动中抽象出植树问题的模型,掌握种树棵树与间隔数间的关系。

  (2)体验复杂问题简单化的快乐。

  教学重点:应用植树问题的模型解决相关的实际问题。

  教学难点:理解棵树与间隔数之间的关系。

  教学准备:课件

  教学过程:(如下文)。

  一、课前谈话

  1.手指游戏

  师:双手创造了幸福的生活,在我们的手上也隐藏了数学奥秘,同学们想明白吗?请举起右手像老师这样做,五指伸直,并拢再张开。看着张开的手,你从中想到了什么数字?(5,5个手指)

  师:老师从中也得到了一个数字4,你们明白它指的是什么吗?(缝隙、空格等)

  师:对了,指的是手指间的空格,在数学上我们把这样的空格叫做间隔。每两个手指之间有一个间隔,大家仔细观察老师的手,5个手指,有几个间隔,4个手指时有几个间隔呢?3个,2个手指时呢?

  师:你们发现手指数与间隔数的关系了吗?谁能说一说?(间隔数+1=手指数)

  [设计意图:以趣激学。从学生最熟悉的教学资源“手”入手,在简单的氛围中进入学习状态,初步感知生活中的植树问题。]

  2.导入课题

  师:我们手上都有这么多数学奥秘,看来数学真是无处不在!生活中的间隔到处可见。比如,刚才我们看到的5根手指有几个间隔;爬楼梯要几层;栓广告牌要几个柱子等就是数学中的植树问题。(板书课题:植树问题)这天咱们主要来研究“两端都栽”的规律。(板书:两端都栽)

  二、动手种树,初步感知

  1.创设情境,提出问题

  (1)课件出示例1

  同学们在全长100米的.小路一侧植树,每隔5米栽一棵树(两端要栽)。一共需要多少棵树苗?

  (2)理解题意

  ①指名读题,从中你了解哪些信息?

  ②理解“两端”是什么意思?

  (3)讨论交流

  师:我这样认为,100÷5=20,所以要准备20棵树苗。你们觉得呢?有了答案后与同桌交流交流。

  全班讨论、交流,汇报后得出结论,这种说法不对。就应是:

  100÷5=20(段)20+1=21(棵)(板书)

  2.简单验证,发现规律

  师:把双手举起来叉开手指,能够看到10根手指共有9个间隔,如果把手指看成树苗,10棵树有9个间隔。

  课件演示:每5米一棵,种到第100米的时候,你发现了什么?(两端都要种)

  问:100÷5=20(段)20表示什么意思?(两棵树之间的距离)

  20+1=21(棵)20段为什么不是20棵,而是21棵呢?

  我们把这条小路平均分成20份,其中的每一份(或者说每一段,每一个空)就是一个间隔,在这道题中,间隔指什么?共有几个间隔呢?也就是说,如果两端都种,种的棵树=间隔数+1

  透过这个例题,你明白了什么?(棵数与段数有关,求棵数得先求段数。即段数=总长÷间距)

  师:你们真了不起,发现了植树问题中十分重要的规律,那就是:

  间隔数(段数)=全长÷段长

  植树的棵数=间隔数+1

  全长=段长×段数

  [设计意图:导之敢学。在决定、计算、验证探索中学习知识,发现知识,并透过讨论交流,发现植树问题的一个十分重要的规律。]

  三、利用规律,解决问题

  师:其实植树问题并不只是与植树有关,生活中还有许多现象和植树问题很相似,我们一齐来看一看下面几个问题。

  ①刘怡瑶从家到校园乘公共汽车行驶路线全长3千米,相邻两站的距离是1千米。一共有几个车站?

  ②张老师去某班教室,从一楼开始,每走一层有12个台阶,共走了36个台阶,你明白她去几楼的教室吗?

  ③广场上的大钟3时敲3下,8秒敲完。11时敲11下,需多长时间?

  师:这些题是不是应用植树问题的规律解决的?看来,应用植树问题的规律,不仅仅能解决植树的问题,生活中很多类似的现象也能用植树问题的规律来解决。

  [设计意图:乐中求学。把生活中类似植树问题的各种现象糅合在一齐,加深对植树问题模型的理解,提升学生思维的灵活性和深刻性。]

  四、再次探究,构建模型

  1.创设情境,激趣导入

  师:咱县新开张的德克士为了进一步宣传,要在全长50米的店面前沿插彩旗,请按照每隔5米插一面的要求设计方案,并说明理由。

  2.设计方案,动手操作

  师:能够独立思考也可小组讨论再设计方案。把你们设计的方案想一想,画一画,摆一摆。择优录取哦!

  (生动手摆学具,画线段图,动手算,师行间巡视,个别辅导,注意发现不同的算法)

  3.反馈交流

  师:谁来说一说自己设计的方案?把前沿分成几个间隔?(10个)插了几面旗?(11面,10面,9面)

  师:为什么同样的长度,同样的要求,插的旗数却不一样呢?你们的方案有什么特点呢?谁来展示一下自己的设计方案。

  生1:我设计分成10个间隔,插11面旗,两端都插旗(投影展示线段图同时师五指伸直手势表述)。

  生2:我也分成10个间隔,插10面旗,一端不插旗。(投影展示算法师拇指弯曲其余伸直手势表述)

  生3:我10个间隔插9面旗,两端不插旗。(投影展示学具摆法后师拇指和小指弯曲其余手指伸直表述)……

  4.师小结

  同一个要求,同学们却设计出了这么多不同的方案,真有创造力!看来你们都有成为设计师的资格。

  五、精彩回放,画龙点睛

  1.用手势表达植树问题的模型并考察同桌的掌握状况。

  2.透过这节课的学习,你们有什么收获?

  六、穿越时空,展望未来

  有20棵树,若每行4棵,问怎样种植,才能使行数更多?

  七、板书设计

  植树问题:

  两端都种:棵数=间隔数+1

  100÷5=20(个)……(间隔数)

  20+1=21(棵)……(棵数)

  10-1=9(个)……(间隔数)

  9+1=10(棵)……(棵数)

《植树问题》教学设计9

  教学目标:

  1.通过探究发现一条线段上两端要种和两端不种两种不同情况植树问题的规律。

  2.使学生经历和体验“复杂问题简单化”的解题策略和方法。

  3.让学生感受数学在日常生活中的广泛应用,尝试用数学的方法来解决实际生活中的简单问题,培养学生的应用意识和解决实际问题的能力。

  一、谈话引入,明确课题

  母亲节刚过,我们马上又要迎来一个快乐的节日──“六·一儿童节”,这也是全世界少年儿童共同的节日。其实,一年中有意义的日子还有很多,你还知道哪些?能说几个吗?(生说)

  大家知道3月12日是什么日子吗?(植树节)你参加过植树活动吗?植树不仅能美化环境,净化空气,而且植树中还有很多数学问题。今天这节课,我们就一起来研究“植树问题”。(板书课题:植树问题)

  二、引导探究,发现“两端要种”的规律

  1.创设情境,提出问题。

  ①课件出示图片。

  介绍:这是我县新修的一条公路。公路中间有一条绿化带,现在要在绿化带中种一行树,怎么种呢?

  出示题目:这条公路全长1000米,每隔5米种一棵树(两端要种)。一共需要多少棵树苗?

  ②理解题意。

  a.指名读题,从题中你了解到了哪些信息?

  b.理解“两端”是什么意思?

  指名说一说,然后师实物演示:指一指哪里是这根小棒的两端?

  说明:如果把这根小棒看作是这条绿化带,在绿化带的两端要种就是在绿化带的两头要种。

  ③算一算,一共需要多少棵树苗?

  ④反馈答案。

  方法一:1000÷5=200(棵)

  方法二:1000÷5=200(棵)200 +2=202(棵)

  方法三:1000÷5=200(棵)200 +1=201(棵)

  师:现在出现了三种答案,而且每种答案都有不少的支持者,到底哪种答案是正确的呢?咱们可不可以画图模拟实际种一种?如果从图上一棵一棵种到1000米,数一数,是不是就能知道到底谁的答案是正确的了呢?

  2.简单验证,发现规律。

  ①画图实际种一种。

  课件演示:我们用这条线段表示这条绿化带。“两端要种”,我们从绿化带的这头开始,先在头儿上种上一棵,然后隔5米再种一棵,再隔5米再种一棵,再隔5米再种一棵,照这样一棵一棵的种下去……

  师:大家看,已经种了多少米?(45米)这么长时间才种了45米,一共要种多少米?(1000米)要一棵一棵一棵一直种到1000米呀?!同学们,你有什么想法?(太累了,太麻烦了,太浪费时间了)

  师:老师也有同感,一棵一棵种到1000米确实太麻烦了。其实,像这种比较复杂的问题,在数学上还有一种更好的研究方法,大家想知道吗?这种方法可不是一般的方法。大家听好喽,这种方法就是:遇到比较复杂的问题先想简单的,从简单的问题入手来研究。比如:1000米的路太长了,我们可以先在短距离的路上种一种,看一看。大家想不想用这种方法试一试?

  ②画一画,简单验证,发现规律。

  a.先种15米,还是每隔5米种一棵,画图种一种,看种了多少棵?比一比,看谁画得快种的好。(板书:3段4棵)

  b.跟上面一样,再种25米看一看,这次你又分了几段,种了几棵?(板书:5段6棵)

  c.任意选择一段距离再种一种,看这次你又分了几段,种了几棵?从中你发现了什么?

  (板书:2段3棵;7段8棵;10段11棵。)

  d.你发现了什么?

  小结:你们真了不起,发现了植树问题中非常重要的一个规律,那就是:

  (板书:两端要种:棵树=段数+1)

  ③应用规律,解决问题。

  a.课件出示:前面例题

  问:应用这个规律,前面这个问题,能不能解决了?那个答案是正确的?

  1000÷5=200这里的200指什么?

  200 +1=201为什么还要+1?

  师:这个“秘方”好不好?

  通过简单的例子,发现了规律,应用这个规律解决了这个复杂的问题。以后,再遇到“两端要种”求棵树,知道该怎么做了吗?

  b.解决实际问题

  运动会上,在笔直的跑道的一侧插彩旗,每隔10米插一面(两端要插)。这条跑道长100米,一共要插多少面彩旗?(学生独立完成。)

  问:这道题是不是应用植树问题的规律解决的?

  师:看来,应用植树问题的规律,不仅仅能解决植树的问题,生活中很多类似的现象也能用植树问题的规律来解决。

  小结:刚才,我们应用发现的规律,解决了一个实际问题。我们已经知道,“两端要种”求棵树用段数+1;如果“两端不种”棵树和段数又会有怎样的关系呢?

  三、合作探究,“两端不种”的规律

  1.猜测“两端不种”的规律。

  猜测结果是:两端不种:棵树=段数-1

  师:到底同学们的猜测是不是正确呢?我们还是用前面学习的方法,举简单的例子画一画,种一种。

  要求:每人先独立画一段路种种看;然后4人一组进行交流。你们组发现了什么规律?

  2.独立探究,合作交流。

  3.展示小组研究成果,发现规律,验证前面的猜测。

  小结:同学们太了不起了,通过举简单的例子,自己又发现了“两端不种”的规律:棵树=段数-1。如果“两端不种”求棵树,你会做了吗?

  4.做一做。

  ①在一条长20xx米的路的一侧种树,每隔10米种一棵(两端不种)。一共需要多少棵树苗?(学生独立完成)

  ②师:同学们注意看,这道题发生了什么变化?

  课件闪烁:将“一侧”改为“两侧”

  问:“两侧种树”是什么意思?实际要种几行树?会做吗?赶紧做一做。

  小结:今天我们研究了植树问题的两种情况。发现了两端要种:棵树=段数+1;两端不种:棵树=段数—1。以后同学们在做题的时候,一定要注意分清是“两端要种”还是“两端不种”。

  四、回归生活,实际应用

  1.一根木头长8米,每2米锯一段。一共要锯几次?(学生独立完成。)

  8÷2=4(段)

  4—1=3(次)

  问:为什么要—1?这相当于今天学习的植树问题中的那种情况?

  2.我们身边类似的数学问题。

  ①看,这一列共有几个同学?(4个)如果每相邻两个同学的距离是1米,从第1个同学到最后一个同学的距离是多少米?如果这一列共有10个同学呢?100个同学呢?

  ②这一列还是4个同学,如果每相邻两个同学之间的距离是2米,从第一个同学到最后一个同学的距离是多少米呢?

  3.在一条路的一侧种树,每隔6米种一棵,一共种了41棵树。从第1棵树到最后一棵树的距离是多少米?

  五、全课总结

  通过今天的学习,你有哪些收获?

  师:通过今天的学习,我们不仅发现了植树问题中两端要种和两端不种的规律,而且还学习了一种研究问题的方法,那就是遇到复杂问题先想简单的。植树中的学问还有很多,有兴趣的同学,课下可以查阅有关的资料继续研究。

  “植树问题”说课

  “植树问题”是人教版新课程标准实验教材四年级下册“数学广角”的内容。大家都知道,数学的思想方法是数学的灵魂。本册安排“植树问题”的目的就是向学生渗透复杂问题从简单入手的思想。为此,本课制定了三个教学目标:

  1.通过探究发现一条线段上两端要种和两端不种两种不同情况植树问题的规律。

  2.学生经历和体验“复杂问题简单化”的解题策略和方法。

  3.让学生感受数学在日常生活中的广泛应用,尝试用数学的方法来解决实际生活中的简单问题,培养学生的应用意识和解决实际问题的能力。

  本课教学分四大环节:

  一、谈话导入,明确课题

  二、引导探究,发现“两端要种”的规律

  1.创设情境,提出问题。

  通过创设在公路中间绿化带中植树的现实问题情境,提出“共需多少棵树苗的问题”。学生在解答的过程中出现了三种不同的答案,到底哪种答案对呢?引导学生通过画图实际种一种去检验。通过模拟种学生体验到一棵一棵种到1000米太麻烦了,于是老师介绍研究复杂问题的方法:遇到复杂问题想简单的,从简单问题入手去研究。(说明:为了使学生对复杂问题简单化的思想体验得更深刻,教材原题是在100米的小路的一侧植树我们将100米改为了1000米。)

  2.简单验证,发现规律。

  在举简单例子画一画这个环节,安排了两个小层次:

  ①按老师要求画。

  ②学生任意画。

  通过按老师要求画,学生对棵树和段数的关系已有了一定的感性认识。然后让学生再任意画一画,种一种,更丰富了学生的感性材料,为学生顺利发现并总结规律打下了基础。

  3.应用规律,解决问题。

  ①应用规律,验证前面例题哪个答案是正确的'。

  ②应用规律,解决插多少面小旗的问题。

  这样一方面巩固刚发现的规律,另一方面使学生认识到植树问题的规律不仅仅能解决植树的问题,还能解决生活中很多类似的问题。

  三、合作探究“两端不种”的规律

  1.猜测“两端不种”的规律。

  猜测是一种培养学生推理能力的好方法。学生已经发现了“两端要种”的规律,这时候老师提出如果两端不种,棵数和段数又会有怎样的规律呢?有了前面的学习基础,学生的思维非常活跃,想表达的欲望也很强烈。所以这时候让学生进行猜测是很有必要的,通过验证证明绝大多数同学的猜测是正确的,这样学生的研究成果被认可使学生会有一种成就感,从而也更增强了学生学习数学的信心。

  2.独立操作,探究规律。

  有了前面的学习基础,放手让学生先独立探究再合作交流,通过简单的例子验证前面的猜测,发现两端不种的规律。在这个过程中,学生对复杂问题从简单入手的数学思想又有了更深刻的体验。

  四、回归生活,实际应用

  设计了三道题:锯木头、算第一个同学和最后一个同学的距离以及对算距离问题的进一步巩固。通过解决生活中的问题,使学生感受到数学知识源于生活,用于生活,数学就在我们身边。从而使学生深刻感受到数学的应用价值,激发了学生学习数学的兴趣。

《植树问题》教学设计10

  教学内容:

  《植树问题》

  教学来源:

  人教版小学数学教材第九册第七单元《植树问题》

  教学对象:

  五年级学生

  备课人:

  张金玲

  基于标准:

  数学广角的教学目标可概括为以下几点:

  1、 感悟重要的数学思想方法;

  2、 运用数学的思维方式进行思考,增强分析和解决问题的能力;

  3、 在参与观察、猜测、试验、推理等数学活动中发展合情推理,感悟演绎推理思想,学会独立思考。

  教材分析:

  《植树问题》是人教版义务教育课程标准实验教科书五数上册第七单元“数学广角”中的内容。“数学广角”是人教版中的一个亮点,它系统而有步骤地向学生渗透数学思想方法,尝试把重要的数学思想方法通过学生可以理解的简单形式,采用生动有趣的事例呈现出来。这一单元内容就是植树问题,教材将植树问题分为几个层次,有两端栽、两端不栽、一端栽一端不栽以及环形情况、方阵问题等。本节课例1是两端都栽树的情况。

  学情分析:

  学生已经学习了除法的含义、《表内除法》、《除数是一位数的除法》、《除数是两位数的除法》以及用线段图来解决问题的方法。从学生的思维特点看,四年级学生仍以形象思维为主,但抽象思维能力也有了初步的发展,具备了一定的分析综合、抽象概括、归类梳理的数学活动经验。这部分内容放在这个学段,说明这个内容本身具有很高的数学思维和很强的探究空间,既需要教师的有效引领,也需要学生的自主探究。

  学习目标:

  1.利用学生熟悉的生活素材、通过画线段图、填表格、讨论交流等活动,能化繁为简并说出两端都栽的情况下间隔数与棵数之间的关系。

  2.能发现并理解植树问题(两端要栽)的一般解题规律,并能利用规律解决相关的实际问题。

  评价任务:

  任务一:通过猜谜活动,以及画线段图、做表格等活动,完成目标一。

  任务二:通过课堂例题的理解分析,找到两端都栽的植树问题的一般解题规律,达成目标二前半部分。另外利用习题的解决,达成目标二的后半部分。

  【学习重点】:发现棵数与间隔数的关系。

  【学习难点】:理解两端都栽的植树问题的一般解题规律并能运用规律解决问题。

  【教学准备】:课件、小组学习单

  【教学过程】:

  一、导入新课

  1、猜谜语,直观认识间隔

  新课前老师给大家带来一个谜语,请看,“两棵小树十个杈,不长叶子不开花,能写会算还会画,天天干活不说话。打一人体的组成部分。”它是什么呢?谁知道?(手)

  同意的举手?你们真会联想,它就是我们的手。我们的手作用可真大,能写会算还会画,而且我们的手上还有许多的数学奥秘,仔细看自己的手,你能看到数字吗?(5)

  哦,怎么看出5了?(表示手指的个数)谁还看到了数字5?真不错,除了用数字可以表示手指的个数,咱们的手上还有没有数字?(还能看到手指之间的间隔,两个手指之间的缝隙,教师说明,缝隙就称为间隔。)。

  手指之间还有一个个的间隔。同学们,咱们手上五个手指之间到底有几个间隔呢?(4个)

  我们一起来数一数。还真有4个间隔。那四个手指之间有几个间隔?三个手指之间呢?两个手指之间呢?(生依次回答。)

  你发现什么了吗?(生说)

  的确,手指数和间隔数之间是有着一定的规律的,它们之间的这种规律最适合解决今天我们要研究的这类问题,这类问题的`名字叫做植树问题。板书:植树问题。

  二、探究规律 实现目标

  1、例题探究

  说起植树问题我们就先从植树谈起吧。请看例题。

  出示例题1:在全长1000米的小路一边植树,每隔5米栽一棵(两端都栽)。一共要栽多少棵树?

  A、从题中你能知道哪些信息?谁来说一说?生说,师画。

  它们都表示什么,大家知道吗?生说:一边表示只在小路的一侧种树。全长1000米表示第一棵树和最后一棵树之间的距离是1000米。每隔5米栽一棵表示棵与棵之间的距离是5米……

  师小结:

  一边是小路的一侧,指左边或者右边,全长1000米是指小路的总长。每隔五米栽一棵是每两棵树之间的距离,简称间距。两端要栽指起点与终点处都要栽。

  B、算一算,一共要栽多少棵树?反馈答案:

  方法1:1000÷5=200(棵)

  方法2:1000÷5=200 200+2=22(棵)

  方法3:1000÷5=200 200+1=21(棵)

  疑问:现在出现了三种答案,到底哪种答案是正确的呢?下面我们一起来验证一下,你想用什么方法验证?(生说:画线段图的方法)

  三、自主探究,发现规律

  1、化繁为简探规律

  是个好办法!我们可以选择画线段图来验证。每隔5米栽一棵就画一段,再过5米再画一段,这样我们需要画多少段呢?好画吗?为什么呀?(数据太大了)。那怎么办呢?(选择简单的数据进行研究,得出规律再解决这道题)

  是呀,在遇到比较复杂的问题时,我们可以先用比较简单的例子来研究。你准备选用哪个数来研究?(生说)下面请大家自己选择简单的数据在练习本上试着进行验证,并把你试的结果汇报给组长填在表格中,之后观察表格中的数据,你发现了什么?把你的发现在小组内说一说。

《植树问题》教学设计11

  【教学目标】

  1、知识与技能:通过合作探究,动手实践,让学生在做数学的过程中经历由现实问题到构建数学模型的过程,理解并掌握植树棵数与间隔数之间的关系。

  2、过程与方法:通过学生自主实验、探究、交流、发现规律,培养学生动手操作、初步探究、合作交流的能力,并培养学生针对不同问题的特点灵活解决问题的能力。

  3、情感态度价值观:让学生在探索、构建模型、用模型的过程中体验到学习成功的喜悦和认识归纳规律对后续学习的重要性,培养学生探索归纳规律的意识,体会解决植树问题的思想方法。

  【教学重难点】

  引导学生在观察、操作和交流中探索并发现间隔数与棵数的规律。并能运用规律解决实际的问题。

  【教学准备】课件,纸条。

  【教学过程】

  一、谈话引入,明确课题

  在我国的北方经常出现沙尘暴天气,它给我们的生活带来了很大的危害,今天老师也给大家带来了几张有关沙尘天气的图片新闻。(课件出示沙尘暴的图片)同学们知道吗?实际呀沙尘天气是大自然对人类的惩罚,正因为以前人们的乱砍乱伐,破坏了大自然的生态环境,才会出现今天的沙尘天气。最近呀咱们这个城市也经常出现雾霾天气,雾霾比沙尘暴天气危害更大,那雾霾给我们的生活带来了什么不便呀?那你们知道治理沙尘和雾霾天气最好的办法是什么?(植树造林)。那么今天这节课我们就来研究植树中的数学问题。(板书课题)

  二、探索交流,解决问题

  (一)设计植树方案

  为了改善我们的校园环境,让大家呼吸到更新鲜的空气,学校准备在全长20米的小路一边植树,请按照每隔5米栽一棵的要求设计一份植树方案。(你能设计出几种方案)

  你们认为应该怎么种树?只让学生口答方案,追问有哪三种方案?(两端种树、一端种树、两端不种)。

  (二)、两端都种

  出示方案一:学校在一条长20米的小路一边植树,每隔5米栽一棵(两端要栽)。一共需要多少棵树苗?

  (1)学生齐读题,理解题意:强调“一边”和“两端”,理解每隔5米栽一棵的意思。

  (2)理解示意图展示。

  那我们就一起来试着种一下吧!用一条线段来表示20米长的小路的一边,我们应该怎么种呢?开头为什么要种?(因为是两端植树)也就是说路的开头先要种一棵,那下棵怎么种呢?要和头一棵树隔5米,也说是隔5米种一棵,一直种到小路的末端。

  (3)理解株距。

  看示例图,大家发现没有每两棵树之间的.距离相等吗?都是多少?(5米)这里的5米就表示株距,株距指的就是每两棵树间的距离。实际上株距表示的就是一个间隔的长度。

  (4)发现规律

  谁能说说棵数和间隔数之间是什么关系?

  板书:两端都栽:棵数=间隔数+1

  间隔数棵数-1

  (5)教学画线段图

  这个公式短时间记住没问题,但时间长了,三个月、半年、一年忘了怎么办?可以借助画线图,带着学生在黑板上画线段图。

  (6)引导学生列式:

  20÷5=4(个)(这里的4指什么?)

  4+1=5(棵)(这个算式求的是什么?为什么要加1?)

  答:一共需要5棵树苗

  (三)、两端都不种

  出示方案二:学校在一条长20米的小路一边植树,每隔5米栽一棵(两端都不栽)。一共需要多少棵树苗?

  (1)指生读题后,说说这道题和上一题的不同点。

  (2)两端都不栽什么意思?指生比划一下,出示示例图让学生判断画的对吗?

  (3)发现规律并板书。

  (4)同桌之间互相列算式。

  (5)指生交流并点评。

  (四)、一端种树

  出示方案三:学校在一条长20米的小路一边植树,每隔5米栽一棵(只栽一端)。一共需要多少棵树苗?

  (1)生齐读题后,说说这道题和上一题的不同点。

  (2)只栽一端什么意思?

  (3)指生交流,发现规律并板书。

  小结:通过这三种植树情况,大家发现没有要想算出棵数,必须知道什么?(只要知道间隔数,就可以算出棵数。)引导学生说出:间隔数=总长÷株距。

  你们真是学校的智多星,不仅帮学校解决了难题,还探究出了植树的规律,真是太棒了!你们幸福吗?拍拍手吧!

  (五)强化规律

  课件出示种树的三种情况,学生抢答,记忆种树的规律。

  其实啊,植树问题也不只是与植树有关,生活中还有很多的现象与植树问题类似,你能举出一些类似的例子吗?(指名说一说,如,路灯,栏杆,队形……)数学上我们把这些现象统称为植树树问题,我们一起来看一下生活中的植树现象。(课件展示图片。)

  三、回归生活,实际应用。

  我们都知道数学离不开生活,要解决生活中的植树问题,我们首先要确定它是三种情况中的哪一种。老师收集了一些生活实例,同学们能不能运用我们刚探究的这些规律来解决这些问题呢?对自己有没有信心?那就让我们一起走进数学,走进生活吧!(课件逐一出示练习)

  1、为迎接六一儿童节,学校准备在教学楼前60米的道路一旁摆放鲜花(靠墙一端不放),相邻两盆花之间的距离3米。一共需要几盆花? 属于( )

  ①两端摆 ②一端摆 ③两端不摆

  答:一共需要( )盆花。

  2、小学生广播操队列中,其中一列纵队26米,相邻两个学生之间的距离是2米。这列纵队一共有几个学生?

  属于( )

  ①两端都站 ②一端站 ③两端不站

  答:这列纵队共有( )个学生。

  3、一根木头长8米,每2米锯一段。一共要锯几次?属于( )植树现象?

  ①两端种 ②一端种 ③两端不种

  答:一共要锯( )次。

  4、动物园的大象馆和猩猩馆相距60米,绿化队要在两馆间的小路两旁栽树,相邻两棵树之间的距离是3米,一共要栽几棵树?

  (1)先判断属于哪种情况,独立解决。

  (2)小组交流。

  (3)汇报。

  四、回顾整理,反思提升。

  学习永远是件快乐而有趣的事情,这节课老师感到很快乐,我收获了幸福,你们收获了什么?

  【板书设计】 植树问题

  两端都栽: 两端都不栽: 只栽一端:

  棵数=间隔数﹢1 棵数=间隔数-1 棵数=间隔数

  间隔数=棵数-1 间隔数=棵数+1

《植树问题》教学设计12

  教学目标:

  1、在摸一摸、摆一摆、想一想、说一说等实践活动中发现间隔数与植树棵数之间的关系。

  2、在亲身体验、交流中,进一步理解间隔数与棵数之间规律,并解决生活中的植树问题。

  3、在学习活动中,体会数学与生活的密切联系,锻炼数学思维能力,体验数学思想方法在解决问题上的应用,感受日常生活中处处有数学,进一步激发学生学习和探索的兴趣。

  教学重点:

  理解“植树问题(两端要种)”的特征,应用规律解决问题。

  教学难点:

  让学生发现植树的棵数和间隔数之间的关系。应用规律解决问题。

  教学准备:

  课件

  教学过程:

  一、初步感知间隔的含义

  1、肢体体验:同学们都有一双灵巧的小手,它不但会写字、画画、干活,在它里面还蕴藏着有趣的数学知识,你想了解它吗?请举起你的右手,并将五指伸直、张开、用左手摸摸右手,数一数,五个手指有几个空格?(4个空格),师:在数学上,我们把这个空格叫“间隔”。 也就是说,大小拇指在一只手的两端:5个手指之间有几个间隔?(4个间隔)。弯弯你的大拇指看:4个手指之间有几个间隔?(4个间隔);把大、小拇指一齐弯弯看:3个手指之间有几个间隔?(4个间隔),那么,将5个手指换成小树,5棵小树之间有几个间隔(4个)。

  师:生活中的“间隔”到处可见,你知道生活中还有哪些间隔吗?(两棵树之间、两个同学之间、楼梯、锯木头、敲钟…都有间隔。)

  2、引入课题:师:树可以美化环境,清新空气,我们要多植树。在一条直线上种树,每两棵树之间相等的段数叫做间隔数,每个间隔的长度叫间距,也叫株距。间隔数与棵数的关系,数学里统称植树问题,这就是我们今天要探究的内容——在一条不封闭的直路上的“植树问题”。( 揭题,板书:植树问题)

  二、探究规律,解决问题。

  1、找出两端都种树的.规律

  植树问题情景1,师出示:例1.同学们在全长100米的小路一边植树,每隔5米栽一棵(两端要栽),一共需要多少棵树苗?师:请同学们默读题目,谁来分析一下这道题的条件、问题、关键词和单位?要求一共需多少棵树苗?先要知道两端都栽树,棵数与间隔数有什么关系?要解决这个问题,实践是检验真理的唯一标准, 但是100米这个数字有点大,不好验证,在遇到比较复杂的问题时,我们可以先用比较简单的例子来验证。

  假设路长只有10米、15米、20米,每5米栽一棵,两端都栽:(两端就是路的两头),要栽几棵呢?(小组合作用画线段图来表示小路,假设路10米,每隔5米种一棵,这条小路平均分成了几个间隔?两端都栽,摆几棵小树呢?)师:请同学们仔细观察,两端都栽树,栽树的棵数与平均分成的间隔数谁多谁少呢?(棵数都比间隔数多1或间隔数比棵数少1)师问为什么两端都种树,棵树只比间隔数多1呢?(因为从一端看过去,棵数和间隔数一一对应,一端只多了一棵树。)已知间隔数怎样求棵数呢?出示并板书:两端都栽:棵数=间隔数+1)考考你:如果这条路是25米、每隔5米栽一棵,各要平均分成几个间隔?两端都栽,栽几棵树呢?30米呢?

  师:现在我们用研究出的两端都栽树,棵数等于间隔数加1的规律来解决例1中的问题,在全长100米的小路一边植树,每隔5米栽一棵(两端要栽),一共需要多少棵树苗?生:100÷ 5 = 20 (个间隔)20+ 1= 21(棵)。利用两端都栽树,

  棵数=间隔数+1”这个规律解决了两端都植树的问题。

  三、应用规律,走进生活。

  走进生活:

  (一)目标检测:

  1.排列在同一条直线上的16棵树之间有( )个间隔。 2.从第1棵树到最后1棵树之间有30个间隔,一共有( )棵树。

  3.在一条全长200米的小路一边植树,每隔4米种一棵(两端要种),一共需多少棵树苗?

  (二)闯关题

  1、工人叔叔准备在一条长200米的大桥一侧安装路灯,每隔40米安装一盏,问共需安装几盏?

  2、广场上的大钟5时敲响5下,8秒敲完。12时敲12下,需要多长时间?

  3、5路公共汽车行驶路线全长12千米,相邻两站的距离是1千米。一共有几个车站?

  4、小明从1楼到3楼需走36级台阶,小明从1楼到6楼需走多少级台阶?

  5、15个军人站成一列,每两个军人间距离为1米,这列队伍有多长?

  四、总结:通过这节课的学习,你们有什么收获?

  五、作业设计

  实地考察

  六、板书设计:植树问题

  两端要栽:棵数=间隔数+1;

《植树问题》教学设计13

  单元教学目标:

  1、使学生通过生活中的事例,初步体会解决植树问题的思想方法。

  2、初步培养学生从实际问题中探索规律、找出解决问题的有效方法的能力。

  3、让学生感受数学在日常生活中的广泛应用,尝试用数学的方法来解决实际生活中的简单问题,培养学生的应用意识和解决实际问题的能力。

  教学时数:4课时

  数学广角植树问题(一)

  第一课时教学内容:

  教科书第117页118页的例1、例2

  教学目标:

  1、利用学生熟悉的生活情境,通过动手操作的实践活动,让学生感悟分的段数与植树棵树之间的关系。

  2、通过小组合作、交流、使学生能理解段数与植树棵树之间的规律。

  3、通过实践活动激发热爱数学的情感,感受日常生活中处处有数学,体验学习成功的`喜悦。

  教学重点、难点:

  教具:

  挂图、直尺

  教学过程:

  一、创设情境,引入课题

  1、每位小朋友都有一双灵巧的小手,它不但会写字,画画、干活,在它里面还藏着有趣的数学知识,你想了解它吗?请举起你的右手,请每一位学生高举起右手,并将五指伸直,关拢。

  师:现在请每位小朋友将五指张开,数一数,张开后有几个空格?(4个)

  师:在数学上,我们把这个空格叫间隔。刚才,我们把五指张开,有4个空格,也就是4个间隔。

  2、举例说出生活中的间隔到处可见,比如:在马路边种树,每两棵树之间有一段距离,我们就把这一段距离叫做一个间隔,楼梯、锯木头等。

  3、大家清楚地看到,5个手指之间有4个间隔,那么,将手指换成小树,5棵小树之间有几个间隔(4个),6棵呢?7棵呢?

  今天,我们就来学习有趣的植树问题。

  (一)出示:在全长100米的小路一边植树,每隔5米栽一棵(两端要栽)。一共需要多少棵树苗?

  1)同桌相互讨论。

  2)有线段图表示你的方法

  3)学生汇报

  4)引导总结:

  两端要栽的时候,比较间隔数和棵数,你得出什么规律?(生:棵树比间隔数多1)

  你能用一个式子表示两端都栽的棵数和间隔数的关系吗?

  板书:棵数=间隔数+1

  5)在线段图上,又有怎样的关系呢?

  点数=间隔数+1

  6)这个问题应是:1005=20(个)间隔数

  20+1=21(棵)棵数

  巩固练习

  (一)书第118页的做一做独立完成,指名反馈。

  (二)出示:大象馆和猩猩馆相距60米。绿化队要在两馆间的小路两旁栽树,相邻两棵树之间的距离是3米,一共要栽几棵树?

  1)读题,理解题。

  2)分组看图讨论。

  3)尝试列式计算。

  4)交流:603=200间隔数

  两端不栽树:20-1=19(棵)

  192=38(棵)

  5)质疑:

  为什么减1?为什么乘2?

  比较例1与例2的不同?小组讨论,再交流

  例1两端要栽树,所以棵数比间隔大1:例2两端不栽树,所以棵数比间隔少1。

  巩固练习二:

  教科书第119页做一做1、2题

  学生独立完成,集体反馈。

  三、本课小结:

  通过今天的学习,你有什么收获?

《植树问题》教学设计14

  教学分析:

  “植树问题”是人教版五年级上册数学广角中的一个教学内容,解决植树问题的思想方法是实际生活中应用比较广泛的数学思想方法。植树问题通常是指沿着一定的路线植树,这条路线的总长度被树平均分成若干段(间隔),由于路线的不同、植树要求的不同,路线被分成的段数(间隔数)和植树的棵数之间的关系就不同。在现实生活中类似的问题还有很多,比如公路两旁安装路灯、花坛摆花、站队中的方阵,等等,它们中都隐藏着总数和间隔数之间的关系问题,我们就把这类问题统称为植树问题。在植树问题中“植树”的路线可以是一条线段,也可以是一条首尾相接的封闭曲线,比如正方形、长方形或圆形等等。即使是关于一条线段的植树问题,也可能有不同的情形,例如,两端都要栽,只在一端栽另一端不栽,或是两端都不栽。?

  例1是探讨关于一条线段的植树问题并且两端都要栽的情况,根据教材的意图,要让学生经历猜想、试验、推理等数学探索的过程,从简单的情况入手解决复杂的问题,让学生选用自己喜欢的方法来探究栽树的棵树和间隔数之间的关系,并启发学生透过现象发现规律,让学生初步体会解决植树问题的'思想方法以及这种方法在解决实际问题中的应用。

  学生分析:

  由于学生初次接触“植树问题”,这部分的学习内容学生一定会很感兴趣,学习的热情也会比较高涨,但根据以往的教学经验,这部分内容对于学生来说是不容易理解和掌握的。学生已经掌握了关于线段的相关知识,也具备了一定的生活经验和分析思考能力与计算能力,因此为了让学生能更好地理解本单元的教学内容,在教学过程中点对教材进行适当的整合,并充分利用学生原有的知识和生活经验,来组织学生开展各个环节的教学活动。

  教学目标:

  知识技能目标:

  1、利用学生熟悉的生活情境,通过动手操作的实践活动,使他们发现间隔数与植树棵数之间的关系;

  2、通过小组合作、交流,在理解间隔数与棵数之间规律的基础上解决简单的植树问题。

  过程目标:

  1、使学生经历感知、理解知识的过程,培养学生从实际问题中发现规律,并应用规律来解决问题的能力;

  2、渗透数形结合的思想,培养学生借助图形解决问题的意识;

  3、培养学生的合作意识,养成良好的交流习惯。

  情感目标:

  1、通过实践活动激发热爱数学的情感;

  2、感受日常生活中处处有数学,体验学习成功的喜悦。

  教学重点:

  理解“植树问题(两端要种)”的特征,应用规律解决问题

  教学难点:

  理解“间距数1=棵数,棵数-1=间距数

  教学准备:

  课件10厘米15厘米20厘米的纸条三根,小棒20根。

  教学过程:

  一、设计情境,引入新课。

  1、教学“间隔”的含义

  师:每位同学都有一双灵巧的手,他不但会写字、画画、干活,在他里面还藏着有趣的数学知识,你想了解他吗?请举起你的右手。(五指伸直、并拢、张开)

  (课件出示)师:张开的五指中有几个空隙?(4个)数学中我们把这个“空隙”叫“间隔”。(板书)我们发现5根手指中有4个间隔,那么4根手指呢?3根呢?

  2、举例生活中的“间隔”

  师:生活中的“间隔”到处可见,你能举几个例子吗?(两棵树之间、两个同学之间、钟声…)

  3、理解间隔数,引入课题。

  树木不仅美化环境,还能净化空气。在一条直线上植树,每两棵树之间相等的段数叫间隔数(课件演示),每个间隔的长叫间距,研究间隔数和棵数之间关系的问题,我们统称为植树问题,这节课我们来研究植树问题。(板书课题)

  二、自主探究,找出规律。

  1、出示例题,引出问题。

  师:(课件出示例题。)

  师:谁能读一读?这道题告诉我们什么数学信息?求什么问题?你认为这道题中什么词语最关键?

  (课件解释关键词语,加深学生理解)

  师:你认为要求一共植树多少棵,关键是知道什么?(间隔数)那么间隔数和棵数之间是什么关系?下面我们就来研究。

  2、动手操作,发现规律。

  (1)师:长100米的小路,数字有点大,当我们遇到复杂问题的时候,可以换成一个简单的例子来进行,请同学们看要求。(课件出示要求)

  生活动,并思考:

  1、每条小路上的间隔数是多少?

  2、棵数是多少?

  3、间隔数和棵数之间是什么关系?

  小组同学互相交流自己的发现。

  师指导。

  (2)生汇报活动结果及自己的发现(实物投影展示)

  生初步得出结论:棵树比间隔数多1。

  3、师生小结,得到规律。

  师:老师把同学们的活动过程展示出来,并用线段图来表示我们的活动结果,请同学们看。

  从这个表格中,我们更可以容易看出,间隔数和棵数之间是什么关系?生回答师板书:

  间隔数=棵数-1棵数=间隔数1。

  4、回顾例题,解决问题。

  师:现在我们就用学到的知识来解决例1的问题。生独立解决,共同评价。

  三、巩固新知(课件出示):

  1、填一填。

  让生独立看要求,说说题目中有哪些数学信息,如何解决。

  2、园林工人沿着公路一侧植树,每隔6米栽一棵小树,一共栽了21棵。从第一棵到最后一棵的距离有多远?

  3、园林工人沿公路一侧植树,每隔6米种一棵,一共种了36棵。从第1棵到最后一棵的距离有多远?

  (1)生独立阅题,说说这个题目中又有哪些数学信息呢?

  (2)这个题目和前面做的两题有什么不同呢?(①前面那题告诉路的长度,而这题求路的长度。②前面那题求植树棵树,而这题已经告诉了植树棵树。)

  (3)在做前面那题时,我们是先求什么的?(间隔数)那在这个题目中,我们应该先算什么?

  (4)学生独立解答并汇报:

  4、5路公共汽车行驶路线全长12千米,相邻两站的距离是1千米。一共有几个车站?

  5、广场上的大钟5时敲响5下,8秒敲完。12时敲12下,需要多长时间敲完?

  四、师生共总结。

  这节课我们学到了什么知识,你有什么收获?

《植树问题》教学设计15

  教材分析:本册“数学广角——植树问题”包含三个问题(两端都栽、只栽一端、两端都不栽),主要渗透有关植树问题的一些思想方法,通过现实生活中一些常见的实际问题,让学生从中发现一些规律,抽取出其中的数学模型,然后再用发现的规律来解决生活中的一些简单实际问题。教材第106页例1通过学生熟悉的植树情境,引导学生借助线段图,经历猜想、实验、抽象等数学活动过程,探索间隔与点之间的数量关系,建立植树问题的数学模型,再运用模型解决实际问题。让学生经历分析、思考、解决问题的全过程。

  教学内容:人教版义务教育教科书五年级上册第七单元数学广角——植树问题例1及相关练习。

  教学目标:

  1、通过生活中的事例。重点理解植树问题中“两端都栽”情况,理解与掌握间隔数与棵数之间的关系及其变化规律。

  2、通过具体问题的解决过程,经历观察、猜测、验证、推理与交流等一系列的数学活动,培养学生的研究意识和探究能力,感悟化繁为简、数形结合、一一对应的数学思想方法,积累基本的数学活动经验。

  3、能运用规律或策略解决相关的实际问题,感受数学在生活中的广泛应用,培养学生的应用意识和解决实际问题的能力。

  教学重点:引导学生经历规律的获得过程,建立数学模型,并用所学的方法解决一些简单的问题。

  教学难点:理解间隔数与棵数之间的关系。

  教学准备:多媒体课件,小树和小路模型

  教学过程:

  一、谈话引入

  1、师:你们知道3月12日是什么节日吗?(植树节)植树有什么好处呢?

  2、揭题课题:今天我们就来研究有关植树的问题。(板书课题:植树问题)

  二、探究新知

  1、提出问题,猜想规律。

  出示情境图:同学们在全长100m的小路一边植树,每隔5m栽一棵(两端都栽)。一共要栽多少棵树?

  引导学生理解题意。

  学生尝试解答:你认为一共需要多少棵树?你是怎样想的?

  提出质疑:对吗?我们需要检验一下。

  引导学生提出研究设想。

  看来这个问题值得我们研究,可100m有点长,研究起来不方便,怎样才能使我们的研究方便呢?(对,我们可以先研究20m的小路一边栽树情况)

  2、动手操作,探究规律。

  (1)研究在20m的小路上栽树的问题。

  学生利用手中的学具摆一摆,或者画一画线段图,看看每个5m栽一棵,一共要栽几棵。

  (2)研究30m、35m、40m……小路上的植树情况,完成手中的表格。

  3、讨论交流,总结规律。

  仔细观察表格,你发现间隔数和棵数之间有什么关系?

  先同桌交流,再全班交流。(棵数=间隔数+1)

  4、解决问题,运用规律。

  (1)解决课本第106页例1,“在100m的`小路一边植树,每隔5m栽一棵。一共需要栽多少棵树?

  (2)思考:如果是“两边都植树”,那一共需要多少棵树呢?

  三、深化提高

  智力大闯关

  第一关:

  1、学校有一条长60米的小道,计划在道路一旁栽树,每隔3米栽一棵(两端要栽)。一共要栽多少棵树苗?

  2、在一条全长2千米的街道两旁安装路灯(两端也要安装),每隔50米安一盏。一共要安装多少盏灯?

  第二关:

  1、园林工人沿一条笔直的公路一侧植树,每隔6米种一棵,一共种了36棵。从第一棵到最后一棵的距离有多远?

  2、1路公共汽车从新城到老城设有10个站台,每相邻两个站台之间的距离为1千米。1路公共汽车的行驶路线全长多少千米?

  第三关:

  1、广场上的大钟5时敲响5下,8秒钟敲完。12时敲响12下,敲完需要多长时间?

  2、一条路原有木电线杆46根,每两根之间相隔12米。现在要全部换成水泥电线杆,如果每两根电线杆之间间隔20米,需要多少根水泥电杆?

  四、回顾总结

  通过今天的学习,你有什么收获?还有哪些问题?你是用什么方法来获取这些知识的?

  五、拓展延伸

  假如只栽一端,或者两端都不栽,棵数与间隔数又有什么样的关系?想研究吗?那么请同学们用今天学到的方法课后研究研究,好吗?

  六、板书设计植树问题

  (线路一侧,两端都栽)

  间隔数=总长÷间距

  棵数=间隔数+1

【《植树问题》教学设计】相关文章:

《植树问题》教学设计05-21

植树问题教学设计08-01

植树教学设计06-02

《烙饼问题》教学设计07-31

植树的季节教学设计12-15

四年级数学《植树问题》教学设计07-19

《鸽巢问题》教学设计10-23

《走,我们去植树》的教学设计12-27

两步连乘的实际问题教学设计12-20