《分数除法》教学设计

时间:2024-07-01 10:05:45 教学设计 我要投稿
  • 相关推荐

《分数除法》教学设计

  作为一名教学工作者,时常需要用到教学设计,教学设计是教育技术的组成部分,它的功能在于运用系统方法设计教学过程,使之成为一种具有操作性的程序。教学设计应该怎么写才好呢?以下是小编帮大家整理的《分数除法》教学设计,仅供参考,大家一起来看看吧。

《分数除法》教学设计

《分数除法》教学设计1

  教学目标:

  1、通过对比两个除法算式与一个乘法算式,比较已知数和得数,理解并概括出分数除法的意义。

  2、掌握分数除以整数的计算方法。

  3、通过教学,培养学生的知识迁移能力和抽象、概括能力。

  4、使学生明确知识间是相互联系的。

  教学重难点:

  重点:

  理解分数除法的意义,掌握分数除以整数的计算方法。

  难点:

  掌握分数除以整数的计算方法。

  教学过程:

  一、导入

  1、例1。

  2、改编条件和问题,用除法计算。

  二、教学实施

  1、初步理解分数除法的意义。

  师问:如果将一盒重八分之五千克的水果平均分成5份,求其中一份是多少千克,该怎样计算?

  学生试着列出算式。

  引导观察:这几道算式之间有怎样的关系?分数除法是什么样的运算?它的意义和整数除法的意义是否相同?

  2、归纳概括分数除法的.意义。

  3、分数除以整数。

  (1)例1引导学生分析并用图表示数量关系。

  师问:求每份是这张纸的几分之几,怎样列式?

  (2)列式计算。

  师问:从图上看,结果是多少?这个结果是怎样得到的?

  学生折一折,算一算。

  (3)理清思路。

  思路一:把五分之四平均分成2份,就是把4个五分之一平均分成2份,每份是2个五分之一,也就是五分之二。

  思路二:把五分之四平均分成2份,求每份是多少,就是求五分之四的二分之一是多少。

  (4)总结分数除以整数的计算方法。分数除以整数等于分数乘这个数的倒数。

  5、巩固练习。完成教材第30页“做一做”。

  三、课堂作业设计

  1、填空。

  (1)分数除法的意义与整数除法的意义( ? ),都是已知( ? ?)与( ? ?),求( ? ? )的运算。

  (2)分数除以整数(0除外),等于分数( ? ?)这个整数的( ? ?)。

  2、计算并验算。

《分数除法》教学设计2

  教学目标:

  1、能根据分数乘法应用题的数量关系,理解、掌握分数除法应用题的数量关系,并用方程或除法正确列式解答。

  2、提高学生分析问题的能力。

  3、培养学生养成良好的审题习惯。

  教学重难点:

  理解、掌握分数除法应用题的数量关系,并用方程或除法正确列式解答。

  教学准备:

  电教媒体

  教学过程:

  一、教学准备

  1.说下列各句中单位“1”的量及想到的'数量关系式。

  (1)我的身高是爸爸的

  (2)小华的邮票张数比小芳多

  (3)十月份的电费比九月份减少

  (4)小瓶里的果汁是大瓶的

  小结:单位“1”的量×对应分率=对应量

  2.请学生由(4)编题:编一道一步计算的分数乘法题。

  师根据学生回答板书:一大瓶果汁有900毫升,一小瓶里的

  果汁是大瓶的 ,一小瓶里果汁有多少毫升?

  问:你认为编得对不对?为什么能确认?

  (1)学生列式解答(口答)。

  (2)为什么用900× ?

  (3)小结:(板书)一大瓶果汁数量× =一小瓶果汁数量

  二、新授

  1.改编成例5:一小瓶里的果汁是大瓶的 ,一小瓶果汁有

  600毫升,一大瓶里果汁有多少毫升?

  (1)读题,比较异同:

  变:条件、问题的位置变了

  不变:单位“1”的量没变,数量关系式没变。

  (2)怎么解答?生试做,汇报

  方程:解设一大瓶x毫升

  x=600

  算式:600÷

  x=600× =600×

  x=900=900(毫升)

  (1)说想法

  (2)怎么检验?

  900× =600(毫升) 或600÷900=

  (3)再次比较二题的异同

  小结解题步骤:

  ①找单位“1”的量,想数量关系式

  ②看问题

  ③列式解答

  ④检验

  2.按照解题步骤完成“试一试”

  ①读题

  ②说单位“1”的量及数量关系式

  ③解答

  ④汇报

  3.按步骤解答练习十二第1题

  4.总结、揭题:

  (1)总结:求单位“1”的量是多少,可以列方程解答,也可以用对应量÷对应分率=单位“1”的量

  (2)揭题:这就是今天学习的“分数除法的实际问题”(板书)

  三、练习

  1.完成练习十二第3题

  小结:为什么都用除法计算?(都是求单位“1”的量。)

  2.课作:练一练、练习十二第2题

  练习十二第2题改乘法题

  3.看关键句,分别编一道乘法题,一道除法题

  “黑兔只数是白兔的3/5。”

《分数除法》教学设计3

  教材分析:

  教材中呈现了两个问题,经过比较我们不难发现,这两个问题的共同点是都把分,第(1)题是平均分成2份,第(2)题是平均分3份,第(1)题的算式是除数的分子是能被除数整除的,而第(2)题的算式是4平均74 ÷2,被74 ÷3,被除数的分子是不能被37整除的。无论哪种方法,目的只有一个,就是让学生在涂一涂、算一算的过程中,借助图形语言,利用已学过的分数乘法的意义,解决有关分数除法的问题,从而理解分数除法的意义,并从中总结分数除以整数的计算方法。

  学情分析:

  这部分内容在学习,是在学生学习了分数乘法和认识了倒数在基础上进行的。学生之前掌握了分数乘分数的计算方法,为本单元在新知识起到了良好在铺垫作用。学生对倒数在认识,为分数除法中“除以一个数(0除外)等于乘这个数在倒数”的应用打下了基础。

  教学方法:

  学生在涂一涂、算一算的过程中,借助图形语言,利用已学过的分数乘法的意义,解决有关分数除法的问题,从而理解分数除法的意义,并从中总结分数除以整数的'计算方法。

  教学内容:

  教科书第55—56页,涂一涂、算一算及想一想、填一填和课后试一试

  教学目的:

  1、在涂一涂、算一算等活动中,探索理解分数除法的意义。

  2、探索并掌握分数除以整数的计算方法,并能正确计算。

  3、能够运用分数除以整数的方法解决简单的实际问题。

  4、培养学生的动手能力和发散思维能力。

  教具准备:

  长方形纸不同颜色彩笔几支幻灯片

  课时安排:2课时

  第一课时

  教学过程:

  一、复习旧知

  1、什么是倒数?(乘积为1的两个数互为倒数)

  2、你能举出几个例子吗?

  3、如何求一个数的倒数?(求一个数的倒数时,用1去除以这个数。如果求一个整数的倒数,直接写成这个整数分之一即可;如果求一个分数的倒数,就是把这个分数的分子和分母互换;如果求一个小数的倒数,要将这个小数先化成分数再求;如果求一个带分数的倒数,应先将其化成假分数再求倒数。)

  二、算一算

  笑笑和淘气去买白糖。

  问题1:他们每人买了两袋白糖,一共买了多少袋白糖?(2×2=4袋)

  问题2:这些白糖一共重2千克,每袋白糖有多重?(2÷4=1/2千克)

  问题3:如果笑笑家15天吃完一袋白糖,那么平均每天吃多少千克?(1/2÷15=?千克)

  三、探究新知

  师:我们怎么解决问题3的困难呢?这就是我们今天学习的内容——除数是整数的分数除法。[板书课题:分数除法(一)]

  1、出示情境图问题:把一张纸的平均分成2份,每份是这张纸的几分之几?

  师:观察屏幕上的图,想一想:是把哪一部分平均分成2份?每份是多少?在准备的长方形纸条上用自己喜欢的方法折一折,涂一涂。

  学生活动,师巡视。

  组织交流:通过画图,你发现了什么?

  生:4里面有四个1/7,平均分成两份,是两个1/7,就是2/7。 74 ÷2嘛?7

  师:能用一个算式表示出涂色的过程吗?(板书算式)

  师:想一想,如果不看图,你会计算

  你能说说你的大胆猜想嘛?(分母不变。被除数的分子除以整数得到商的分子)

  2、师:大胆的猜想是一种非常好的数学思考方法,但还要经过科学的验证。我们来看看大家的猜想能不能也解决这一题呢?

  课件出示:把一张纸的平均分成3份,每份是这张纸的几分之几?(板书算式)

  师:看来我们要换一种思维方式探索一种能普遍运用的方法。把这4份平均分成3份,每份是这张纸的几分之几呢?请同学们动手在纸上分一分,涂一涂,涂好后和同桌交流一下怎样分。

  学生活动,师巡视

  组织交流:通过画图,你发现了什么?4平均分成3份,每份就是这张纸的4/21。 744生2:把平均分成3份,这其中的一份实际上就是的几分之几?77生1:

  师:我们之前说,求一个数的几分之几可以用乘法!对照这两道算式,你有什么想法吗?

  师:把44平均分成3份,就相当于求的1/3,结果都是4/21,因此中间我们可以用等号连77起来。你们看,原来的除法算式就转化成什么算式?什么变了?什么没变?这样有什么用?

  生:被除数没变,除号改成了乘号(板书),除数3改成了3的倒数1/3 。

  (设计意图:学生运用画图或者分数的意义来解决问题,体会画图策略,锻炼学生解决问题的能力。)

  提问:同样的平均分成5份,每份实际上是44的几分之几?分成6份,每份实际上是的77几分之几?(板书算式)

  师:同学们真棒!会把新知识转化成旧知识来解决,以旧学新是我们数学学习的一个重要方法。

  师:现在大家会计算刚才我们上课一开始的这道题了吗?我们一起算一算。

  四、巩固练习

  师:下面,我们就运用我们掌握的计算方法来完成教材上第56页的“练一练”2学生独立完成,全班交流。说一说你这节课的收获。

  (设计意图:让学生计算后,观察得出结论,并进行归纳,发现规律,注意了知识胡迁移)小结:这就是分数除以整数的常用方法,谁来说一说这种算法是怎样的?那么0能不能做除数呢?所以,这里还要不上一个条件(0除外)

  五、作业设计

  课件出示练一练

  (设计意图:让学生学会灵活运用计算规律:做分数乘法时,可以先约分再计算或者先计算再约分。)

  六、板书设计

《分数除法》教学设计4

  教学目标

  1、结合具体情境观察比较,理解分数与除法的关系,会用分数来表示两数相除的商。

  2、运用分数和除法的关系,探索假分数与带分数的互化方法,初步理解假分数与带分数互化的算理,会正确进行互化。

  教学重点、难点

  1、理解掌握分数与除法的关系。

  2、会对假分数与带分数进行正确互化。

  教学过程

  活动一:创设情境,引导探索。

  师出示例1:我想调查一下,最近那位同学要过生日?指一名同学说说你过生日的时候必须要买什么食品?(生:蛋糕)买了蛋糕是自己吃,还是同爸爸妈妈一起吃?

  师:同学们愿意帮xxx同学分一分蛋糕吗?

  生:愿意!

  师:出示蛋糕,接着出示例2:把一个蛋糕平均分给3个人,平均每人能分得多少?

  师:这时,应该把什么看作单位“1”?

  要把蛋糕平均分成几份?怎样列式?(指名口述算式)1÷3=

  师:大家拿出练习本来计算这个商是多少?

  生:3(1)

  师:对了!那么上面的算式1÷3的商可以用分数1/3表示了。

  即:1÷3=3(1)(个)

  答:每人分得3(1) 个。

  活动二:剪一间,拼一拼。

  师:“六一”联欢的时候,我打算买3张非常好吃的比萨饼,想和班主任刘老师、还有两名在这学期进步最大的同学A和B共同分享,大家能帮我们合理的分一下吗?

  生:想!

  师:出示例2 :把3张饼平均分给我们4个人,每人分得这3张饼的几分之几呢?

  ①议一议:这里应该把哪个量看作单位“1”的量?用什么方法分?有哪些分法?(让同学们充分考虑好后,说说自己的想法)[课件显示3张饼]

  ②剪一剪:下面我们用事先准备好的3个圆形表示这3张饼,请同学们以小组剪一剪,并把分好的四份摆在桌子上。[课件显示把3张饼分成了4份] ③拼一拼:分好后,请同学们每人取一份拼在一起,看看每份是一个“饼”的几分之几? [课件显示拼好后的3/4个饼]

  ④列一列:怎样用算式表示分饼的数量关系?谁会列式?

  ⑤算一算:师指一名同学板演算式:3÷4= 4(3)(张)

  答:每人分得4(3) 张。

  观察刚才所得结果:

  1÷3=3(1) 3÷4= 4(3)

  讨论、感知关系

  讨论完毕后,指几名同学代表自己的小组总结:学生口述的过程中,教师出示课件:

  被除数÷除数= 被除数/除数

  如果分别用字母a和b表示除法算式中的被除数和除数,分数与除法的这种关系怎样表示?

  学生回答,师板书:a÷b= a/b

  师:大家考虑:这里的a和b是否可以是任何自然数?为什么?

  生:不可以,因为这里的b≠0

  师:左侧b≠0,那么右侧的b是否可以是0?为什么?

  师:讨论完后,教师用红色粉笔标上: b≠0

  活动三:总结提升,归纳关系。

  1、让学生说一说分数与除法的联系:分子相当于除法中的被除数,分母相当于除法中的`除数,分数线相当于除法中的除号。

  2、判断:“分数就是除法,除法就是分数”这句话对不对?

  活动四:课堂检测(一)

  1、填空:课本P39试一试1。

  2、用分数表示下面各式的商。

  1÷4= 3÷4= 8÷3= 7÷3=

  1÷7= 13÷4= 5÷2= 4÷9=

  活动五:假分数带分数互化。

  师:观察练习2中的分数哪些是真分数,哪些是假分数?如何将这些假分数化成带分数呢?

  生:小组讨论思考

  师:以7/3为例讲解,课本P39 T 2、3

  师生共同总结互化方法。

  1、将假分数化为带分数:分母不变,分子除以分母所得整数为带分数左边整数部分,余数作分子。

  2、将带分数化为假分数:分母不变,用整数部分与分母的乘积再加原分子的和作为分子。

  活动六:课堂检测(二)

  课本P40 练一练 的2、3。

  课后作业

  用一张16开的纸设计一张数学报,说说各栏目所占的篇幅约占这张报纸的几分之几。

《分数除法》教学设计5

  教学目标

  1、理解以“和倍”问题为基础的分数应用题的解题思路、会列方程解答此类应用题。

  2、培养学生的迁移类推能力。

  3、培养学生运用所学的知识解决生活中的实际问题的能力。

  教学重点

  理解应用的数量关系,找到题目中的等量关系。

  教学难点

  找准题中的等量关系。

  教学过程

  一、复习。(用含有字母的式子表示)

  1、果园里有苹果树x棵,梨树的棵数是苹果树棵数的3/4。梨树有|()棵。

  苹果树和梨树一共有()棵。

  2、饲养小组养了黑兔a只,白兔的只数是黑兔的5倍,白兔有()只;黑兔和白兔一共有()只。

  二、生活引入

  上一年,有一位学生问我|:“老师,您今年有多少岁啦?我说:我和杨莹的年龄和是42岁,杨莹的年龄是我的年龄的2/5。你能算出老师的年龄是多少岁吗?那杨莹的年龄又是多少岁呢?

  1、老师说:你能解决这个问题吗?通过今天知识的学习,你们就能知道了。

  2、板书课题:分数除法应用题。

  3、学生读题,理解题意弄清谁是单位”1“,画出线段图。

  4、分层指导。

  思考:(1)根据我和杨莹的.年龄和是42岁这个条件找到它的等量关系吗?

  (2)根据杨莹的年龄是我的年龄的2/5这个条件,可以把谁设为?老师,杨莹的岁数用含有的式子怎么表示?

  5、学生练习,集体订正,说明思路。

  三、尝试练习

  (一)出示例3

  例3、饲养小组养的白兔和黑兔共有18只,其中黑兔的只数是白兔的、白兔和黑兔各有几只?

  1、读题,理解题意弄清谁是单位”1“,画出线段图。

  2、小组回答:

  (1)根据饲养小组养白兔和黑兔共有18只这个条件找到它的等量关系吗?

  (2)根据黑兔的只数是白兔的这个条件,可以把谁设为?白兔、黑兔的只数用含有的式子怎么表示?

  3、学生练习。

  4、学生打开书本对答。(65页)

  解:设白兔的只数为只,黑兔的只数是?

  白兔只数+黑兔只数=总只数

  答:白兔有15只,黑兔有3只。

  4、教师提问:这道题还可以怎样列式?

  18÷(1+)什么意思?

  (二)写出下面应用题的等量关系,只列出含有未知数的等式,不解答。

  1、商店运来苹果和沙果350筐,其中沙果的筐数是苹果的,苹果和沙果各有多少筐?

  2、商店运来的苹果比沙果多60筐,其中沙果的筐数是苹果的,苹果和沙果各有多少筐?

  教师归纳:今天学习的应用题在解答时要根据分率句确定单位”1“,把单位”1“设为,另一个数就是几分之几,根据已知条件列出方程解答。

  四、巩固练习

  (一)变式练习

  小文买一支钢笔和一支圆珠笔,买钢笔的价钱比买圆珠笔多13元,圆珠笔的单价是钢笔的6/19,圆珠笔和钢笔各多少元?

  (二)对比练习

  1、李明家九月份用水18吨,十月份用的水是九月份的,九月份和十月份一共用水多少吨?

  2、李明家九月份和十月份共用水34吨,九月份的用水吨数是十月份的,九月份、十月份各用水多少吨?

  (三)选择练习

  果园里苹果树和桃树共350棵,其中苹果的棵数是桃树的,桃树有多少棵?

  解:设桃树有x棵。

  A、B、

  C、D、

  五、质疑总结

  1、用方程解这类题的关键是什么?

  2、用算术方法解答时应注意什么?

  六、板书设计

  分数除法应用题

  解:设老师的年龄是x岁。

  ......老师年龄

  42-30=12......杨莹的年龄

  答:老师30岁,杨莹12岁。

《分数除法》教学设计6

  分数除法是在学生学习了整数乘除法以及解简易方程,并且学习了分数乘法知识的基础上,学习分数除法和比的初步知识。这些知识为学生学习分数除法打下了基础,学习分数除法的知识对加深学生对计算方法的理解和提高学生的计算能力有很好的作用。内容包括:分数除法、解决问题、比和比例的应用。这些知识都是学生进一步学习的重要基础,通过这些知识的学习,学生一方面基本完成任务了分数加、减、除的学习任务,比较系统地掌握了分数四则运算;另一方面又开始了比的初步知识的学习,为后面学习百分数和比例提供了基础。两方面的收获,都将在进一步的学习中发挥重要的作用。

  就学习分数除法而言,首先要明确分数除法的运算意义,在此基础上探究并掌握它的计算方法,然后学习分数混合运算。关于分数除法中的解决问题,主要有两种情况,一种是问题情境的数量关系与整数除法的实际问题相同,区别只是数据由整数变成了分数。另一种是问题情境的数量关系具有一定的特殊性,表现为已知一个数的几分之几是多少,要求这个数。这样的实际问题,与求一个数的几分之几是多少的实际问题具有紧密的内在联系,即数量关系相同,而区别在于已知数与未知数交换了位置。

  教学目标

  知识和技能:

  1、使学生理解倒数的意义,会求一个数的倒数。

  2、使学生理解分数除法的意义,掌握分数除法的计算法则,能熟练地进行计算。

  3、使学生能够用方程或算术方法解答“已知一个数的几分之几是多少,求这个数”的应用题,进一步提高学生解答应用题的能力。 过程与方法:

  动手操作,通过直观认识使学生理解整数除以分数,引导学生正确地总结出计算法则,能运用法则正确地进行计算。 情感、态度和价值观:

  使学生进一步受到事物是相互联系的辩证唯物主义观点的.启蒙教育。 教学重点、难点:

  一个数除以分数的意义以及计算方法,并会分数除法解决相关的问题。掌握分数四则混合运算的运算

  顺序,能应用计算法则较熟练地进行计算。

  我们来看这样一道乘法应用题,妈妈在超市买了3盒糖果,每盒

  是100克,3盒糖果共重多少克?我们可以列式:100×3=300(克)

  如果把这道乘法应用题改编成两道除法应用题,一起来看一下: A、3盒水果糖重300克,每盒有多重? 300÷3=100(克) B、300克水果糖,每盒100克,可以装几盒? 300÷100=3(盒) (3)将100克化成 千克,300克化成 千克,得出三道分数乘、除法算式。 1/10×3=3/10(千克) 3/10÷3=1/10(千克) 3/10÷1/10=3(盒)

  通过与前三道题我们可以得出:分数除法的意义与整数除法相同,都是已知两个因数的积与其中一个因数,求另个一个因数。都是乘法的逆运算。

  分数应用题是小学数学应用题的重要组成部分,分数应用题的数量关系比较复杂,学生分析起来比较困难。下面介绍几种解答分数应用题的常用方法: 一、对应法

  通过审题正确判断单位“1”的量后,把具体数量与分率对应起来,这是解答分数应用题的关键。

  如“某筑路队筑一段路,第一天筑了全长的1/5多10米,第二天筑了全长的2/7,还剩62米未筑,这段路全长多少米?”

  题目中总长度是单位“1”的量,(62+10)米与(1—1/5—2/7)相对应,因此,总长度为:(62+10)÷(1—1/5— 2/7)=140(米)。 二、变率法

  题目中几个分率的单位“1”不相同,可先统一单位“1”的量,然后变换分率,寻找已知数量的对应分率,最终解决问题。

  如“学校买了一批图书,高年级分得这些书的2/5,中年级分得余下的1/4,低年级分得180本,这批图书共有多少本?

  该题中的“1/4”是把余下的本数看作单位“1”,而余下本数又是总本数的(1—2/5),因此,我们可以把中年级分得的本数理解为总本数的(1— 2/5)×1/4,这样可求出总本数: 180÷[1—2/5—(1—2/5)×1/4] =400(本)。 三、常量法

  题目中几个数量前后都发生了变化,而有的数量不变,这就是常量,解题时可把常量看作单位“1”。

  如“小华读一本书,已读页数占未读页数的1/5,如果再读30页,已读页数就占未读页数的3/5,这本书共有多少页?”

  该题中再读 30页后,已读页数与未读页数都在变化,唯独总页数没有变,把总页数看作单位“1”,则总页数为:30÷(3/3+5-1/1+5)=144(页)。 四、联系法

  某些题目中几个数量都与一个数量有联系,把这个数量作为桥梁,解题思路就顺畅了。 如“某小学四、五、六年级学生共种树576棵,五年级种树棵数是六年级种树棵数的 4/5,四年级种树棵数是五年级种树棵数的3/4,五年级种数多少棵?”

  题目中五年级种树棵数与六年级种树棵数有关,又与四年级种树棵数有关,所以,五年级种树棵数是个桥梁,把它看作单位“1”,把“五年级种树棵数是六年级种树棵数的4/5”改变为“六年级种树棵数是五年级种树棵数的5/4倍”,所以,五年级种树棵数为:576÷(1+3/4+5/4)=192 (棵)。 五、转化法

  将复杂问题中的某些条件进行转化,结合改变成简单的问题,从而化繁为简。

  如“某工厂有三个车间,第一车间人数是其余两个车间人数的1/2,第二车间人数占其余两个车间人数的1/3,第三车间500人,三个车间共有多少人?

  把“第一车间人数是其余两个车间人数的1/2”转化为“第一车间人数占三个车间总人数的1/1+2”,“第二车间人数占其余两个车间人数的1/3”转化为“第二车间人数占三个车

  内容需要下载文档才能查看

  间总人数的1/1+3”,这样,就能求出三个车间的总人数:500÷(1-1/1+2-1/1+3) =1200(人)。 六、假设法

  对题目的某些数量作出假设,

  内容需要下载文档才能查看

  导致运算结果与题目不相符合,然后找出产生差异的原因,最终解决所求问题。

  如“一项工程,甲、乙两队合做12天完成,现在先由甲队独做18天,余下的再由乙队接着做了8天正好完成,如果全工程由甲队独做,要多少天才能完成?”

  假设甲、乙两队都做 8天,则共做1/12×8=2/3,比工作总量“1”少1/3,这1/3就是甲队(18-8)天所做的工作量,所以甲队独做的时间为:1÷ [1/3÷(18-8)]=30(天)。 七、倒推法

  题目中几个分率的单位“1”不相同,而且单位“1”难以统一,可以先求部分量,再一步一步地逆推出总数。 如“一捆电线,第一次用去全长的1/6多2米,第二次用去余下的3/4少4米,还剩 16米,这捆电线有多少米?”

  这题中两个分率的单位“1”均为未知量,我们可以从较小的单位“1”求起:(16-4)÷ (1-3/4)=48(米), (48+2)÷(1-1/6)=60(米)。 八、方程法

  一些复杂的分数应用题用算术方法难以解答,不便于理解,如用方程可顺向求解,容易掌握。 如“一项工程,甲、乙两人合做8小时完成,甲独做14小时完成。现在甲做若干小时后,剩下的由乙接着做,前后共用18小时完成。求甲、乙各做多少小时? 设甲x小时,则乙做(18-x)小时,根据两个人的工作量之和为1,可列方程:1/14x+(1/8—1/14)×(18-x) =1,解得×=2,18-2=16(小时)。

《分数除法》教学设计7

  教学目标:

  1、使学生理解分数除法的意义与整数除法的意义相同。

  2、使学生在理解算理的基础上掌握分数除以整数的计算方法,并能正确的进行计算。

  3、经历观察、猜测、实验、验证和归纳的过程,感受数形结合的思想方法,并从中发展抽象思维能力。

  教学重点:

  理解分数除法的意义和分数除以整数的计算方法。

  教学难点:

  正确地归纳出分数除以整数的计算方法,并能准确地计算。

  教具准备:

  课件、练习纸多张。

  教学过程:

  一、复习铺垫。

  1、根据4×5=20,写出两个除法算式。

  (1)让学生说算式,再说说是怎样想的。

  (2)让学生回忆整数除法的`意义是什么?

  二、知识迁移,理解分数除法的意义。

  1、课件出示例子,每盒水果糖重100克,3盒有多重?

  指名列式计算:100×3=300(克)

  2、让学生将上题改编成用除法计算的问题并列式计算。

  学生汇报师板书:3盒水果糖重300克,每盒有多重?300÷3=100(克)

  300克水果糖,每盒100克,可以装几盒?300÷100=3(盒)

  先思考,再试着写一写。(学生独立完成列式)

  3、出示10厘米=米、100克=千克。(要求学生完成)

  4、汇报:

  (1)每盒水果糖重110千克,3盒有多重?110 ×3= 310(千克)

  (2)3盒水果糖重310千克,每盒有多重?310÷3=110(千克)

  (3)310千克水果糖,每盒重110千克,可以装几盒?310÷ 110=3(盒)

  5、引导学生观察这三个算式,比较和整数数除法的不同和相同之处,在小组内交流。

  6、引导学生理解分数除法的意义和整数除法的意义相同,并试着用自己的话小结分数除法的意义。(板书部分课题:分数除法的意义)

  7、练习。

  (1)完成28页“做一做”。

  (2)练习八第1题,让学生独立填写到书上32页。

  三、自主探究,掌握分数除以整数的计算方法

  (一)教学例2

  1、谈话:刚才我们根据分数乘法的算式很顺利地写出了除法算式的商,但是如果没有分数乘法的算式,我们又该怎样计算出分数除法的商呢?下面我们就来研究分数除以整数的计算方法。(板书课题:分数除以整数)

  2、课件出示例2,指一名同学读题。

  3、让学生自己先试着折一折,涂一涂,算一算,再同桌交流折纸方法、计算过程及算理。

  4、小组汇报:

  A、把45平均分成2份,就是把4个15平均分成2份,每份就是2个15,就是。因此可以列出算式:45÷2=25

  B、把45平均分成2份,每份就是45的12也就是45×12。因此可以列式计算如下:

  45÷2=45×12=25

  (二)教学45÷3

  1、初步比较:你觉得哪种方法好?

  首先请学生对两种方法进行初步比较:你认为哪种方法好?这时并不急于统一思想,转而请学生计算÷3。也要求根据课前提供的五等分长方形纸片先折一折,涂一涂,再计算。

  2、课件出示问题,学生独立完成例2第二个小问题,同时允许学生折纸。

  3、汇报结果。45÷3=45 ×13=415

  4、比较两种方法。

  提问:为什么这道题没有用两种方法列式?

  通过同学们的计算,你认为哪种方法更简便,更常用?

  5、观察这两个计算过程,发现什么变了?什么没变吗?

  6、分组讨论分数除以整数的计算方法。

  通过刚才的计算和观察,大家能发现分数除以整数在计算中有什么规律吗?先独立思考,再在小组内说一说。引导得出:分数除以整数(0除外),等于分数乘这个整数的倒数。(板书)

  7、练习

  四、练习巩固,拓展应用

  课本练习八第1、2、3。

  五、全课总结。

  1、通过这节课的学习,你有什么收获?

  2、通过今天的学习,大家不仅知道了分数除法的意义和整数除法的意义相同,还学会了把分数除以整数转化为分数乘法进行计算。本来无关联的乘除运算在这里居然可以转化统一,这就是转化带给我们的美妙与奇特。学好数学吧,你会感受到数学的无限魅力。

《分数除法》教学设计8

  一、教学目标

  1、结合具体事例,经历分数除以整数的过程。

  2、掌握分数除以整数的计算方法,能够进行分数除以整数的计算。

  3、积极参与数学学习活动,有克服困难和运用知识解决问题的成功体验。

  二、教学准备

  小黑板,口算卡。

  三、创设情境。

  1、复习导入(一生说数,另一生说出它的倒数)。

  2、口算练习:(1)205(2)488(3)364。

  201/5481/8361/4。

  四、自主探究。

  (一)根据口算找规律。

  1、提问:通过以上计算,你发现了什么?

  预设:学生可能说出:

  (1)每组的计算结果相同。

  (2)除以一个数和乘以这个数的倒数的结果是一样的。

  (3)每组算式里都有一个除法和一个乘法,符号后面的两个数互为倒数,其结果都是相同的。

  2、教师引导。

  如果用甲数表示被除数,乙数表示除数,那么你能得出什么结论来呢?

  师生总结:甲数乙数(0除外)=甲数乙数的倒数。

  预设:学生可能想不到除数不能为0。

  师引导:所以的数都能作除数吗?

  3、验证以上结论:

  (二)请学生参照以上口算习题,自己试着举出几组来。

  1、出示分饼例题。

  学生用自己喜欢的方法尝试解决。(教师为学生准备了圆片)。

  预设:学生可能会出现两种想法。

  (1)把1/2张大饼平均分成三份,就是把一张大饼平均分成(23=)6份,每份是1/6。(学生可能结合折图片来加以说明)。

  (2)求每份是多少,就是求的.是多少?

  教师根据学生的汇报情况,随机板书。

  2、学生观察计算过程,谈发现。

  3、师生共同总结分数除以一个数的计算方法。

  分数除以一个数(0除外)等于分数乘这个数的倒数。

  五、巩固练习。

  1、完成试一试。

  学生练习。(集体订正时,让学生说一说自己是怎么想的?)。

  2、完成练一练。

  第1、2、4题:学生完成后,汇报解题思路。师生共同交流。

  六、交流收获。

  通过这节课的学习,你有哪些收获?

《分数除法》教学设计9

  设计理念:

  学习数学知识就要与生活联系,培养学生对数学的兴趣,使人人学习有价值的数学。《分数除法的意义和分数除以整数》都涉及到学生日常生活中经常见到,并用到的内容,与学生的生活密切联系,再加上学生有一定的求知欲,能进一步激起学生学习数学的兴趣。教学内容:《分数除法的意义和分数除以整数》是义务教育课程标准实验教科(人教版)小学数学六年级上册第25—26页内容及相应的练习。教学目标:

  1、使学生理解分数除法的意义与整数除法的意义相同。

  2、使学生在理解算理的基础上掌握分数除以整数的计算方法,并能正确的进行计算。

  3、培养学生分析能力,知识的迁移能力和语言表达能力,使学生的抽象思维能力得到发展。教学重点:理解分数除法的意义

  教学难点:正确地归纳出分数除以整数的计算方法,并能准确地计算。教学关键:理解除法的意义。教具准备:课件、练习纸多张。

  教材分析:《分数除法的意义和分数除以整数》是人教版小学数学第十一册第25—26页内容。这节课有两部分内容。第一部分是:分数除法的意义,在处理这部分内容时,出示一组整数乘除法的'复习题,复习整数除法的意义,然后改编成一组分数乘除法题,让学生观察三个算式之间的关系,再与整数一组题比较,发现道理完全一样,从而很自然得出分数除法的意义。第二部分内容是:分数除以整数的计算法则,这是本节课的重点和难点。通过折纸帮助学生理解题意,引导学生通过用两种不同折纸方法得出两种不同计算方法,最后自己说出两种不同的思路,老师都加以肯定,然后让学生任选一种方法计算÷3,发现问题,最后归纳出分数除以整数的计算方法。提高学生的解题能力,发展学生的创新思维能力。

  教学策略及教法设计:

  一、创设情境,导入新课。

  通过电脑出示让学生感受一下我们今天所学习的知识来生活中,而让学生对这节课更感兴趣。

  二、小组合作,学习新知。

  教学分数除法的意义,先通过情境复习整数除法的意义,给出一个整数的乘法算式让学生与出两个除法算式。再根据除法算式改编成两道除法问题,最后并把整数改成分数,分别引出3道分数乘、除法的算式和问题。这过程从整数乘法引出整数除法,得出除法是乘法的逆运算。再将整数化成分数,用同样的方法,证明除法是乘法的逆运算。并得出整数除法的意义分数除法的意义相同,都是已知两个因数的积和其中一个因数,求另一个因数的运算。教学例1,先进行一些×的口算练习。再出示例题问题。通过折纸、计算,对例1的第一个问题的解决,得出2种方法:第一种是每份是2个;另一种是每份是的。通过比较,得出第二种方552241法在所在有题目中都适用,而第一种只能是在特殊既情况才能用。从而用第二种方法解决例1第二个小问题。

  最后总结,归纳出分数除以整数的计算规律,分数除以整数(0除外)等于乘以这个数的倒数。

  三、动手操作,体验成功。

  这个环节主要通过做练习让学生熟练分数除以整数的计算,巩固除法的记忆。

  四、全课小结。

  这个环节主要是让学生自己说,将这节课的主要知识分数除以整数的计算规律向老师说,向同学说,从而巩固对这节课的内容,提高计算能力和表达能力。

  五、作业布置。

《分数除法》教学设计10

  教学目标:

  知识与技能:

  1、在涂一涂,算一算等活动中,探索并理解分数除法的意义。

  2、探索并掌握分数除以整数的计算方法,并能正确计算。

  3、能够运用分数除以整数,解决简单的实际问题。

  过程与方法:

  让学生在独立思考与合作交流的过程中提高应用所学知识解决实际问题的能力。

  情感态度与价值观:

  让学生在观察、思考、探索中体验成功的喜悦。

  教学重难点:

  重点:探索并掌握分数除以整数的计算方法,并能正确计算。

  难点:在涂一涂,算一算等活动中,探索并理解分数除法的意义。

  教学具准备:

  多媒体课件,投影仪。

  教学过程:

  一、复习导入,激发学习兴趣,明确学习主题。

  1、口算

  8×3/40=

  21×2/7=

  5/27×9=

  5/6×12=

  4/5×5/8=

  3/7×7/10=

  2、说出下列各数的倒数,你是如何求的?

  1/5

  6/7

  3/4

  3、列式计算

  把4张长方形的.纸平均分成2份,每份是多少?

  把1张长方形的纸平均分成2份,每份是多少?

  4、根据演示说一说。

  假如这是一张纸,请根据演示(把一张纸的4/7平均分成2份)说一说把什么平均分成2份。(竖着分、横着分)

  2、你能用算式表示吗?

  把一张纸的4/7平均分成2份,每份是这张纸的几分之几?你能列出算式吗?说说你是怎样想的。

  这节课我们就共同探讨分数除法

  (一)分数除以整数中相关知识。

  出示课题:分数除法

  (二)分数除以整数意义和计算方法

  二、合作交流,共同解决问题。

  1、探讨分数除以整数的意义。

  电脑演示把一张纸的4/7平均分成2份,每份是这张纸的2/7

  把一张纸的4/7平均分成3份,每份是这张纸的几分之几?

  你能用算式表示吗?说说你是怎样想的。

  电脑直观演示,得出每份是这张纸的4/21

  通过上面的学习,你知道了什么?

  2、探讨分数除以整数的计算方法

  教材第26页填一填、想一想:在()里填上得数,在○里填上“>”、“

  如:1÷4=()等三组题

  1×1/4=()

  1÷4○1×1/4

  观察等式左右两边,你发现了什么?

  1÷4=1×1/4

  10÷5=10×1/5

  7÷3=7×1/3

  根据除以一个整数(零除外)等于乘这个整数的倒数

  我们来试一试:

  8/9÷6

  4/15÷12

  三、深化练习,提高应用能力。

  1、

  3/8÷5

  6/13÷9

  5/8÷108/15÷6

  2、一小瓶果酱有1/2千克,小明家5天吃完,平均每天吃多少千克?是多少克?

  3、填一填

  ()×5=1/2

  ()×2=4/5

  4×()=1/4

《分数除法》教学设计11

  教学目标

  1.使学生掌握列方程解答已知一个数的几分之几是多少,求这个数的应用题的解答方法

  2.培养学生分析问题、解答问题能力,以及认真审题的良好习惯.

  教学重点

  找准单位1,找出等量关系.

  教学难点

  能正确的分析数量关系并列方程解答应用题.

  教学过程

  一、复习、引新

  (一)确定单位1

  1.铅笔的支数是钢笔的 倍. 2.杨树的棵数是柳树的 .

  3.白兔只数的 是黑兔. 4.红花朵数的 相当于黄花.

  (二)小营村全村有耕地75公顷,其中棉田占 .小营村的棉田有多少公顷?

  1.找出题目中的已知条件和未知条件.

  2.分析题意并列式解答.

  二、讲授新课

  (一)将复习题改成例1

  例1.小营村有棉田45公顷,占全村耕地面积的 ,全村的耕地面积是多少公顷?

  1.找出已知条件和问题

  2.抓住哪句话来分析?

  3.引导学生用线段图来表示题目中的数量关系.

  4.比较复习题与例1的相同点与不同点.

  5.教师提问:

  (1)棉田面积占全村耕地面积的 ,谁是单位1?

  (2)如果要求全村耕地面积的 是多少,应该怎样列式?(全村耕地面积 ).

  (3)全村耕地面积的 就是谁的面积?(就是棉田的面积)

  解:设全村耕地面积是 公顷.

  答:全村耕地面积是75公顷.

  6.教师提问:应怎样进行检验?你还能用别的方法来解答吗?

  (1)把 代入原方程,左边 ,右边是45,左边=右边,所以 是原方程的解.)

  (公顷)

  (根据棉田面积和 是已知的,全村耕地面积是未知的,根据分数除法意义,已知两个因数的积与其中一个因数,求另一个因数应该用除法计算.)

  (二)练习

  果园里有桃树560棵,占果树总数的 .果园里一共有果树多少棵?

  1.找出已知条件和问题

  2.画图并分析数量关系

  3.列式解答

  解1:设一共有果树 棵.

  答:一共有果树640棵.

  解1: (棵)

  (三)教学例2

  例2.一条裤子75元,是一件上衣价格的 .一件上衣多少钱?

  1.教师提问

  (1)题中的已知条件和问题有什么?

  (2)有几个量相比较,应把哪个数量作为单位1?

  2.引导学生说出线段图应怎样画?上衣价格的

  3.分析:上衣价格的 就是谁的价钱?(是裤子的价钱)谁能找出数量间相等的关系?(上衣的`单价 =裤子的单价)

  4.让学生独立用列方程的方法解答,并加强个别辅导.

  解:设一件上衣 元.

  答:一件上衣 元.

  5.怎样直接用算术方法求出上衣的单价?

  (元)

  6.比较一下算术解法和方程解法的相同之处与不同之处.

  相同点:都要根据数量间相等的关系式来列式.

  不同点:算术解法是按照分数除法的意义直接列出除法算式;而方程解法则要先设未知数,再按照等量关系式列出方程.

  三、巩固练习

  (一)一个修路队修一条路,第一天修了全长 ,正好是160米,这条路全长是多少米?

  提问:谁是单位1?数量间相等的关系式是什么?怎样列式?

  (米)

  (二)幼儿园买来 千克水果糖,是买来的牛奶糖的 ,买来牛奶糖多少千克?

  (三)新风小学去年植树320棵,相当于今年植树棵数的 .今年、去年共植树多少棵?

  1.课件演示:

  2.列式解答

  四、课堂小结

  这节课我们学习了列方程解答的方法.这类题有什么特点?解题时分几步?

  五、课后作业

  (一)一桶水,用去它的 ,正好是15千克.这桶水重多少千克?

  (二)王新买了一本书和一枝钢笔.书的价格是4元,正好是钢笔价格的 .钢笔价格是多少元?

  (三)一种小汽车的最快速度是每小时行140千米,相当于一种超音速飞机速度的 .这种超音速飞机每小时飞行多少千米?

  六、板书设计

《分数除法》教学设计12

  教材分析:

  教材中呈现了两个问题,经过比较我们不难发现,这两个问题的共同点是都把分,第(1)题是平均分成2份,第(2)题是平均分3份,第(1)题的算式是除数 的分子是能被除数整除的,而第(2)题的算式是

  4平均74 ÷2,被74 ÷3,被除数 的分子是不能被37整除的。无论哪种方法,目的只有一个,就是让学生在涂一涂、算一算的过程中,借助图形语言,利用已学过的分数乘法的意义,解决有关分数除法的问题,从而理解分数除法的意义,并从中总结分数除以整数的计算方法。

  学情分析:

  这部分内容在学习,是在学生学习了分数乘法和认识了倒数在基础上进行的。学生之前掌握了分数乘分数的计算方法,为本单元在新知识起到了良好在铺垫作用。学生对倒数在认识,为分数除法中“除以一个数(0除外)等于乘这个数在倒数”的应用打下了基础。

  教学方法:

  学生在涂一涂、算一算的过程中,借助图形语言,利用已学过的分数乘法的意义,解决有关分数除法的问题,从而理解分数除法的意义,并从中总结分数除以整数的计算方法。

  教学内容:

  教科书第55-56页 ,涂一涂、算一算及想一想、填一填和课后试一试

  教学目的:

  1、在涂一涂、算一算等活动中,探索理解分数除法的意义。 2、探索并掌握分数除以整数的计算方法,并能正确计算。 3、 能够运用分数除以整数的方法解决简单的实际问题。 4、 培养学生的动手能力和发散思维能力。

  教具准备:

  长方形纸 不同颜色彩笔几支 幻灯片

  课时安排: 2课时

  第一课时

  教学过程: 一、复习旧知

  1、 什么是倒数?(乘积为1的两个数互为倒数) 2、 你能举出几个例子吗?

  3、 如何求一个数的倒数?(求一个数的倒数时,用1去除以这个数.如果求一个整数

  的倒数,直接写成这个整数分之一即可;如果求一个分数的倒数,就是把这个分数的分子和分母互换;如果求一个小数的倒数,要将这个小数先化成分数再求;如果求一个带分数的倒数,应先将其化成假分数再求倒数.)

  二、算一算

  笑笑和淘气去买白糖。

  问题1:他们每人买了两袋白糖,一共买了多少袋白糖?(2×2=4袋) 问题2:这些白糖一共重2千克,每袋白糖有多重?(2÷4=1/2千克)

  问题3:如果笑笑家15天吃完一袋白糖,那么平均每天吃多少千克?(1/2÷15=?千克)

  三、探究新知

  师:我们怎么解决问题3的困难呢?这就是我们今天学习的内容——除数是整数的分数除法。[板书课题:分数除法(一)]

  1、出示情境图问题:把一张纸的 平均分成2份,每份是这张纸的.几分之几?

  师:观察屏幕上的图,想一想:是把哪一部分平均分成2份?每份是多少?在准备的长方形纸条上用自己喜欢的方法折一折,涂一涂。

  学生活动,师巡视。

  组织交流:通过画图,你发现了什么? 生:

  4里面有四个1/7,平均分成两份,是两个1/7,就是2/7。 74 ÷2 嘛? 7师: 能用一个算式表示出涂色的过程吗?(板书算式) 师:想一想,如果不看图,你会计算

  你能说说你的大胆猜想嘛?(分母不变。被除数的分子除以整数得到商的分子)

  2、师:大胆的猜想是一种非常好的数学思考方法,但还要经过科学的验证。我们来看看大家的猜想能不能也解决这一题呢?

  课件出示:把一张纸的平均分成3份,每份是这张纸的几分之几?(板书算式)

  师:看来我们要换一种思维方式探索一种能普遍运用的方法。把这4份平均分成3份,每份是这张纸的几分之几呢?请同学们动手在纸上分一分,涂一涂,涂好后和同桌交流一下怎样分。

  学生活动,师巡视

  组织交流:通过画图,你发现了什么?

  4平均分成3份,每份就是这张纸的4/21。 744生2:把平均分成3份,这其中的一份实际上就是的几分之几?

  77生1:

  师:我们之前说,求一个数的几分之几可以用乘法!

  对照这两道算式,你有什么想法吗? 师:把

  44平均分成3份,就相当于求的1/3,结果都是4/21,因此中间我们可以用等号连77起来。你们看,原来的除法算式就转化成什么算式?什么变了?什么没变?这样有什么用?

  生:被除数没变,除号改成了乘号(板书),除数3改成了3的倒数1/3 。

  (设计意图:学生运用画图或者分数的意义来解决问题,体会画图策略,锻炼学生解决问题的能力。)

  提问:同样的平均分成5份,每份实际上是

  44的几分之几?分成6份,每份实际上是的77几分之几?(板书算式)

  师:同学们真棒!会把新知识转化成旧知识来解决,以旧学新是我们数学学习的一个重要方法。

  师:现在大家会计算刚才我们上课一开始的这道题了吗?我们一起算一算。

  四、巩固练习

  师:下面,我们就运用我们掌握的计算方法来完成教材上第56页的“练一练”2 学生独立完成,全班交流。说一说你这节课的收获。

  (设计意图:让学生计算后,观察得出结论,并进行归纳,发现规律,注意了知识胡迁移) 小结:这就是分数除以整数的常用方法,谁来说一说这种算法是怎样的?那么0能不能做除数呢?所以,这里还要不上一个条件(0除外)

  五、作业设计

  课件出示练一练

  (设计意图:让学生学会灵活运用计算规律:做分数乘法时,可以先约分再计算或者先计算再约分。)

  六、板书设计

  2= ÷3= II ×= ×= ×=

《分数除法》教学设计13

  教学内容:整数除以分数和平共处分数除以分数.教科书第30页例3第31的做一做,练习八的第4和5题。

  教学目标:

  1.通过具体的问题情境,探索并理解分数除法的计算方法。

  2.确地进行分数除法的计算。

  3.培养学生分析、推理能力。

  教学过程:

  一、复习引入

  1.列式,说说数量关系。

  小明2小时走了6km,平均每小时走多少千米?

  速度=路程÷时间

  2.填空。

  2/3小时有()个1/3小时,1小时有()个1/3小时。

  3.口算,说说分数除以整数的计算方法。

  (1/6)÷3(4/5)÷2(3/8)÷6(6/7)÷2

  (分数除以整数等于用分数乘这个整数的倒数,或者除以几等于乘几分之一)

  4.引入课题。

  我们已经学习了分数除以整数的分数除法,想一想,接下去应该学习什么?

  今天这节课我们就来学习研究“一个数除以分数”的`计算方法,看谁最先学会。

  板书课题:一个数除以分数。

  二、解决问题,发现算法

  1.理解题意,列出算式。

  (1)出示例3。

  (2)学生读题,理解题意。

  (3)列出算式,说出列式根据什么数量关系。

  板书:2÷(2/3)(5/6)÷(5/12)

  2.探索整数除以分数的计算方法。

  (1)2÷(2/3)如何计算呢?让我们画出线段图看看。

  (2)先画一条线段表示1小时走的路程(边说边板书),怎样表示2/3小时走了2km这个条件?

  (将线段平均分成3份,其中2份表示的就是2/3小时走的路程。)

  (3)指着图启发:已知2/3小时走了2km,要求1小时走了多少千米?可以先算什么,再算什么?把你的想法与小组成员交流讨论一下。

  (4)根据学生的回答把线段图补充完整,板书计算思路。

  先求1/3小时走了多少千米,也就是求2的1/2,算式:2×1/2

  再求3个1/3小时走了多少千米,算式:2×(1/2)×3

  (5)找出计算方法。

  板书:(乘法结合律)

  现在会算了吗?说说2×1/2是图上的哪一段,表示什么?(1/3小时走了1km)再乘3,得到的结果是图上的哪一段,表示什么?(1小时走了3km)

  启发:刚才我们用2÷2/3求1小时走的路程,现在我们又发现,2×3/2也可以求1小时走的路程,所以

  观察:除法转化成了什么运算?什么没有变?什么变了?是怎样变的?

  强调:被除数没有变,除号变乘号,除数变成了它的倒数。

  (6)小结:从上面这个推算过程中我们找到了整数除以分数的计算方法是:整数除以分数等于用整数乘这个分数的倒数。

  板书,学生齐读。

  3.探索分数除以分数的计算方法。

  (1)让学生尝试计算5/6÷5/12。

  我们已经通过2÷2/3找到了整数除以分数的计算方法,分数除以分数的计算请你们自己试试看。

  (2)学生汇报,教师板书:

  (3)为什么写成×(12/5)?

  (4)怎样验证这种计算结果是正确的?

  学生可能回答:

  ①先求1/12小时走了多少千米,也就是求5/6的1/5,算式是5/6×1/5

  再求12个1/12小时走了多少千米,算式是5/6×1/5×12

  ②用乘法验算。

  (5)回答“谁走得快些”。

  (6)小结:现在我们发现,无论是整数除以分数,还是分数除以分数,都是转化为什么运算,怎样用一句话来叙述这个计算方法?

  让同桌学生相互议一议,再指名回答。

  (7)看书质疑:看看书上是怎样总结的,和你们的叙述有什么不同?

  强调:除以一个不等于0的数。

  齐读法则。

  三、巩固练习

  1.口算。(采用口算对折卡片)

  (1)不能约分的2÷3/5=1/3÷2/5=

  (2)能约分的3÷3/4=2/7÷6/7=

  2.完成课本第31页“做一做”第1题,填在书上。

  第2题,写在课堂练习本上,写出过程。

  3.直接写出得数。

  1/3÷1/3=1÷1/3=5/6÷3=3/7÷6/7=3/7×7/9=

  四、师生共同小结

  1.这节课我们学习了哪些知识?

  2.一个数除以分数的计算方法是什么?

  五、布置作业(略)

《分数除法》教学设计14

  一、教学内容:五年级下册教科书第65—66页。

  二、教学目标:

  1.在具体的问题情境中,探究和理解分数与除法的关系,并能正确地用分数表示两个整数相除的商,会用两种方法叙述分数的意义。

  2.在探究过程中,培养学生观察、比较、归纳等探究的能力。

  3.体会知识来源于实际生活的需要,激发学习数学的积极性。

  三、教学重点:

  经历探究过程,理解和掌握分数与除法的关系。

  四、教学难点:

  通过操作,让学生理解一个分数可以表示的两种意义。

  五、教法要素:

  1.已有的知识和经验:除法的意义和分数的产生、意义。

  2.原型:

  (1)把6块月饼平均分给3个小朋友,每人分几块?

  (2)把1块月饼平均分给3个小朋友,每人分几块?

  (3)把3块月饼平均分给4个小朋友,每人分几块?

  3.探究的问题:

  (1)整数除法得不到整数商的情况时,可以用什么数表示?

  (2)在表示整数除法的商时,用谁作分母?用谁做分子?

  (3)分数与除法的关系是怎样的?

  六、教学过程:

  (一)唤起与生成

  1.提出问题:

  (1)把6块月饼平均分给3个小朋友,每人分几块?怎样列式计算?学生回答,教师板书:6÷3=2(块)

  (2)如果把1块月饼平均分给3个小朋友,每人分几块?怎样列式计

  1算?学生回答,教师板书:1÷3= (块) 3

  并让学生说一说是怎样得到的?(学生表述,师用纸片演示)

  (3)观察以上两个算式,两个数相除商有什么不同?

  2.引入:今天我们就来研究分数与除法的关系。(板书课题)

  (二)探究与解决

  探究一:体会分数与除法的关系

  出示例2主题图,让学生理解题意,并引导学生列出算式:3÷4。

  1.提出问题:你们知道每人分得多少块吗?

  引导学生独立思考。

  2.合作探究

  学生操作:拿出3张同样大小的圆片把它看作3块月饼,用剪刀把它们分一分。

  教师巡视,参与指导。

  3.交流汇报

  交流时,让学生具体说一说是怎样分得;把谁看作单位“1”;把3块月饼平均分成4份,每份是多少。

  教师根据学生汇报总结不同的分法。

  分法一:先把每个圆剪成4个 块,再把12个 块平均分给4人,得到每人3个 块,然后把3个 块拼在一起,得出结果,每人分到 块。

  分法二:按照课本上的方法,把3个圆摞在一起,平均分成4份剪开,再把每份的3个 块拼在一起,得到每人 块。

  分法三:先把2个圆摞在一起,平均分成4份剪开,剪成4 块,再把1个圆平均分成4份剪开,然后把和 块拼在一起,块。

  分法四:操作与推理结合:1块月饼平均分给4人,每人分得 块,块月饼平均分给4人,每人分得3个 块,是 块。

  4.补充事例,举一反三

  (1)把2块月饼平均分给3个人,每人分几块?

  (2)把5块月饼平均分给8个人,每人分几块?

  学生口答,并说说是怎样分的?(教师板书)

  探究二:概括分数与除法的关系

  1.引导学生观察以上几个算式,想一想:

  (1)整数除法得不到整数商的时侯,可以用什么数表示商?

  (2)在表示整数除法的.商时,用谁作分母?用谁做分子?

  (3)分数与除法的关系是怎样的?

  2.组织学生小组讨论交流,全班汇报。

  3.教师总结:可以用分数表示整数除法的商,用除数作为分母,被除数作为分子,除号相当于分数中的分数线。反过来,一个分数也可以看作两个数相除,分数的分子相当于除法中的被除数,分母相当于除数,分数线相当于除号。所以,分数与除数的关系我们可以用式子来表示为:被除数÷除数=被除数/除数(板书)

  提问:这个关系式里每个数的范围要注意什么?

  学生思考并同桌交流。

  指出:因为在除法里除数不能是零,所以分数的分母也不能是零。

  如果用a表示被除数,b表示除数,那么分数与除法的关系可以怎样表示? 板书:a÷b=a/b(b≠0)

  4. 想一想:分数与除法有区别吗?区别在哪里?

  引导学生独立思考,再小组交流。

  教师强调:分数是一种数,但也可以看作两个数相除(分数的分子相当于除法中的被除数,分母相当于除数)。除法是一种运算。

  5.引导学生说一说 表示的两种意义。

  (三)训练与应用

  1.教科书66页“做一做”的第1题。

  2.教科书练习十二第1题。

  3(四)小结与提高

  总结本节课的小结收获:重点说说分数与除法的关系;评价学习表现。

《分数除法》教学设计15

  板书设计(需要一直留在黑板上主板书)

  分数除法

  例1:每盒水果糖重100g,那么3盒有多重?

  100×3=300(g)

  3盒水果糖重300g,那么每盒有多重?

  300÷3=100(g)

  300g水果糖,每盒重100g,可以装几盒?

  300÷ 100=3(盒)

  归纳总结:分数除法的意义与整数除法的意义相同,都是已知两个因数的积与其中一个因数,求另一个因数的运算。

  例2 :把一张纸的4/5平均分成2份,每份是这张纸的几分之几?怎样列式?

  4/5÷2

  方法一:把4/5平均分成2份就是把4份平均分成2份,每份是2个1/5,也就是2/5。展示折纸和计算过程。

  4/5÷2=4÷2/5=2/5

  方法二:把一张纸的4/7平均分成2份,求每份是多少就是求4/5的1/2是多少,可以用乘法来做。展示折纸和计算过程。

  4/5÷2=4/5×1/2=2/5

  归纳总结:分数除以整数(0除外),等于分数乘这个整数的倒数( 结果最简。除号要变成乘号)

  学生学习活动评价设计

  通过这一节课的学习,要使学生理解并掌握分数除法的计算方法,会进行分数除法计算;会解答已知一个数的几分之几是多少求这个数的实际问题;并且这一节课的学习将要为后面运用比的知识解决有关的实际问题打好基础。

  教学反思

  本单元是在学生已经掌握了分数乘法的基础上,学习分数除法和比的初步知识。

  主要内容包括:分数除法的意义与计算;解决问题;比的意义与基本性质等。本单元的内容和学生前面学习的很多知识具有比较直接的'联系。如分数除法,除了与分数乘法的意义、计算及其应用有联系外,还与整数除法的意义,以及解方程的技能有关。而比的初步知识,则要用到分数和除法的一些基础知识。通过本单元的学习,学生一方面基本上完成了分数加、减、乘、除的学习任务,比较系统地掌握了分数的四则运算;另一方面又开始了比的初步知识的系统学习,为后面学习百分数和比例提供了基础。两方面的收获,都将在进一步的学习中发挥重要的作用。我觉得在教学过程中,应充分考虑到学生自身对分数除法的意义的理解的基础上进行教学。在教学过程中要充分利用教材,激活学生已有的知识经验,引导他们展开类比思维,以促进学习的正向迁移。实际上,这也是本单元的课堂教学中,落实学生的主体地位,发挥教师主导作用的有效途径。引导学生数形结合,边操作、边观察、边思考,并通过讨论、交流,在理解的基础上得出算法,进而掌握算法。

【《分数除法》教学设计】相关文章:

《分数除法》说课稿12-08

分数教学设计 02-12

分数教学设计04-13

《分数与除法的关系》说课稿05-08

除数是小数的除法教学设计12-09

《除数是整数的除法》教学设计04-05

《分数的意义》教学设计04-06

分数的意义教学设计04-02

《分数意义》教学设计09-04

《表内除法二》教学设计03-13