《分数乘法》教学设计

时间:2024-07-31 10:01:25 教学设计 我要投稿

《分数乘法》教学设计

  作为一无名无私奉献的教育工作者,总归要编写教学设计,借助教学设计可以促进我们快速成长,使教学工作更加科学化。你知道什么样的教学设计才能切实有效地帮助到我们吗?以下是小编帮大家整理的《分数乘法》教学设计,仅供参考,希望能够帮助到大家。

《分数乘法》教学设计

《分数乘法》教学设计1

  1、分数乘法

  第一课时分数乘整数

  教学内容:教材第8页的例1,第9页的例2以及“做一做”,练习二中的第1、2题。

  教学目标:让学生掌握分数乘正整数的计算方法,并能准确地进行计算。

  重难点、关键

  分数乘整数的计算方法。

  教学准备:电脑课件

  教学过程:一、旧知铺垫

  1、计算下列各题

  2/11+2/11+2/11

  过程要求

  (1)写出计算过程。

  (2)说一说分数加法的计算方法。

  2、想一想,能不能把2/11+2/11+2/11改写成乘法算式呢?

  二、探索新知

  1、教学例1

  (1)出示例题

  根据题意,电脑课件呈现示意图。

  (2)根据题意列出解答算式:

  2/11+2/11+2/11=2+2+2/11=6/11

  2/11×3=6/11

  (3)探索分数乘整数的计算方法。

  师:2/11×3=,说一说你是怎么想的?

  ①学生在小组交流各自的想法

  ②小组讨论后反馈思维的过程和结果

  教师板书:

  ③总结分数乘整数的计算方法。

  A、学生口述分数乘整数的计算方法;

  B、教师整理并板书:

  分数乘整数,整数与分子相乘的乘积作分子,分母不变。

  2、教学例2

  计算:3/8×6

  (1)学生独立计算。

  (2)交流计算方法和步骤。

  (3)比较计算过程,看一看哪一种更为简单

  (3)归纳:能约分的要先约分,再计算。

  三、巩固练习

  1、完成课本“做一做”。

  (1)学生独立完成,然后计算过程和结果。

  (2)第3题,说一说你是怎样计算的?怎样想的?

  一般要求学生列综合算式计算。如:

  6/7×10×7==60(kg)

  2、课本练习二第1、2题

  四、课后作业设计

  一、计算

  7/8×73/4×81/9×31/2×4

  5/6×55/18×327×2/33/816×

  三、列式计算

  1、3个5/8是多少?2、2/3的6倍是多少?

  3、5/14扩大7倍以后是多少?4、5/6与24的积是多少?

  课后反思:

  第二课时分数乘分数

  教学内容:教材第10页例3,第11页例4以及“做一做”,练习二中的3、4题

  教学目标:

  1、理解一个数乘分数就是求一个数的几分之几是多少。

  2、掌握分数乘分数的计算方法,并能正确地进行计算。

  重难点、关键:

  1、重难点:分数乘分数的计算方法。

  2、关键:理解一个数乘分数就是求一个数的几分之几是多少。

  教学准备:实物投影或者电脑课件。

  教学过程:

  一、创设情境引入新课

  教师谈话,以学校粉刷教室或家庭装修新房等学生身边的实例引入。

  出示粉刷墙壁的画面,给出条件:每小时粉刷这面墙的1/5。

  师:能提出什么问题?

  学生提问题,教师板书。

  以分数乘整数的问题作研究内容,如“4小时可以粉刷这面墙的.几分之几?”

  师:怎样列式?(板书1/5×4)

  师:列式的依据是什么?为什么用乘法?(工作效率×工作时间=工作总量)

  让学生计算,并说说怎样计算。

  师:我们解决了4小时粉刷多少的问题,那么1/4小时可以粉刷这面墙的几分之几?(出示问题)怎样列式?依据是什么?

  学生讨论汇报。(根据“4小时可以粉刷这面墙的几分之几”的列式类推出,或根据工作效率×工作时间=工作总量,可以列出1/5×1/4)。板书算式。

  师:(结合板书讲解)我们已经知道求4小时粉刷这面墙的几分之几,就是求4个1/5是多少。求1/4小时粉刷这面墙的几分之几,就是求1/5的1/4是多少。那么1/5×1/4如何计算呢?这就是我们今天学习的内容。

  板书课题:分数乘分数

  二、操作探究计算算理

  1师:下面我们来探讨分数乘分数怎样计算。我们每人准备了一张纸,把它看作这面墙,先在纸上涂出1小时粉刷的面积,应该涂出这张纸的几分之几?

  学生操作。

  学生交流是怎样涂的?(用折或量、分的方法把纸平均分成5份,涂出其中的1份,如下图)

  师:我们已经知道,求1/4小时粉刷这面墙的几分之几,就是求1/5的1/4是多少。再涂出1/5的1/4,小组讨论一下,应该怎样涂?

  小组汇报(把涂出的1/5部分再平均分成4份,涂出其中的1份)。

  学生自己涂色。

  师:从涂色的结果看,1/5的1/4占这张纸的几分之几?1/20

  师:我们可以得到1/5×1/4=1/20。根据涂色的过程,你能说说是怎样得到的吗?

  学生讨论交流汇报。

  教师归纳(用多媒体或投影片演示涂色过程):我们先把这张纸平均分成5份,1份是这张纸的1/5,又把这1/5平均分成4份,也就是把这张纸平均分成了5×4=20份,1份是这张纸的1/20。由此可以得到(板书)。

《分数乘法》教学设计2

  教学目标:

  1.理解整数的运算定律对于分数乘法同样适应。

  2.能灵活掌握分数简便计算的方法。

  3.能正确计算.

  单元知识结构图

  分数乘以整数(求几个几是多少)

  分数意义

  一个数乘以分数(求一个数的几分之几是多少)

  分数乘以整数计算法则(整数看作:)

  分数乘法:分数计算法则分数计算法则的统一

  一个数乘以分数计算法则

  分数乘加、乘减的混合运算(计算顺序与整数相同)

  分数混合运算

  分数乘法的简便计算(运用整数乘法运算定律简算)

  教学重点、难点剖析

  重点:

  1.掌握分数乘以整数、一个数乘分数的意义和计算法则,以及运用分数乘法的意义解答有关的文字题。

  2.灵活掌握计算方法,计算时,分子与分母能约分的要先约分,再相乘。

  3.掌握分数乘加与乘减混合运算的运算顺序。

  4.掌握分数简便计算的方法。

  难点:

  1.分数乘以整数和一个数乘分数的计算法则的推导。

  2.为什么可以把分数乘以整数和一个数乘分数的计算法则统一起来。

  3.正确判断混合运算的运算顺序。

  4.正确运用乘法分配率灵活地进行简便计算。

  子课题教学重点、难点:

  课题一:分数乘以整数

  教学重点:分数乘以整数的意义及计算方法。

  教学难点:分数乘以整数法则的推导,能正确计算分数乘整数的题目。

  课题二:一个数乘以分数

  教学重点:一个数乘以分数的意义,掌握计算法则。

  教学难点:一个数乘分数的计算法则的推导。

  课题三:分数混合运算

  教学重点:运算顺序。

  教学难点:正确判断混合运算的运算顺序。

  课题四:整数乘法运算定律推广到分数乘法

  教学重点:运用定律进行一些简便计算。

  教学难点:正确运用分配率运用定律。

  课题一:分数乘以整数

  教材分析:

  本课时关键在于如何推导出计算法则。至于意义的归纳总结不存在问题。但无论是意义的总结还是法则的推导,难度都不大,学生很容易接受。本节课存在的问题是:计算法则中提出:用分数的分子与整数相乘的积作分子。接着才强调:为了计算简便,能约分的要先约分,然后再乘。因为很多人都有先入为主的基因存在,因此,有不少的学生都是按照法则进行,用分子与整数乘得的积再与分母约分,从而降低了计算的速度与准确度。所以在总结完法则后,要重点强调能约分的一定要先约分。

  重点突破策略:

  1.做好铺垫:为学习分数乘整数的意义和法则的推导做准备。

  (1)复习2+2+2+2=()()与5个12是多少?的题型,小结出整数乘法的意义。

  (2)复习++=()++=()=(),然后小结同分母分数加法的计算方法,特别强调:结果不是最简分数的,一定要约分成最简分数。

  2.归纳意义:

  在学生列出加法算式:后,让学生观察3个加数的特点(3个加数相同),接着引导学生:求几个相同加数的和还可以列式为:3,与整数乘法的意义比较,3的意义就是求3个的和是多少,是的简便计算。由此归纳出分数乘整数的意义:分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数和的简便运算。3就是求3个是多少。

  3.推导法则:

  根据3===3=

  推出分数乘整数的计算法则:分数的分子和整数相乘的积作分子,分母不变。

  4.强调计算的方法:

  (1)分子可以与分母约分的一定要先约分,使计算简便.

  (2)用适当的练习强化能约分的一定要先约分的算理.

  课题二:一个数乘以分数

  教材分析:

  这部分内容是学生在学过分数乘整数的意义和计算方法的基础上进行教学的。它是后面学习分数除法的意义以及分数乘除法应用题的基础。所以这部分内容是教学的重点。

  一个数乘分数,包括整数乘分数和分数乘分数。但它们的意义都可以概

  括为求一个数的几分之几是多少。这是对整数乘法意义的扩展,因此是教学的'一个重点。本节的难点在于:推导一个数乘以分数的计算法则,所以一定要将推导过程分析清楚,击破难点。

  由于整数可以看成分母是1的假分数,所以不管是分数乘整数还是整数乘分数都可以转化为分数乘分数,因此分数乘分数的计算法则对于分数乘整数和整数乘分数都适用。这部分的内容表面看不难,但学生开始做分数乘整数()和整数乘分数()的题目时,往往会将整数与分子约分,建议在讲例题时要加以强调约分的方法。

  重、难点突破策略:

  1.意义的教学:

  (1)铺垫,建立模型:

  第4页图(1)教学建议:

  在学生求出3杯的重量后,再多列举几道类型题,

  求千克的3倍是多少?(3)

  如求5杯、2杯重几千克?实质就是:求千克的5倍是多少?(5)

  求千克的2倍是多少?(2)

  使学生的脑里形成:求一个数的几倍是多少,用乘法计算的模型。

  (2)导出意义:

  ①第4页图(2)教学建议:

  求杯水的重量,就是求1杯水重量的半倍是多少,即求千克

  半倍是多少?根据图(1)的模型类推可以列式:半倍,这里的半倍即杯,那么,半倍就相当于。

  因此求的是多少?用乘法列式就是:

  ②第4页图(3)的教学可仿照图(2)的教学。

  ③导出意义:一个数与分数相乘就是求这个数的几分之几是多少。

  ④意义的运用:求一个数的几分之几是多少用乘法。(一个数=多少)

  (3)意义的应用:做练习第4页的文字题,巩固一个数成分数的意义.

  2.推导出计算法则:

  (!)教学公顷的是多少的计算方法

  联系分数乘法的意义,着重说明就是求的是多少。第一步先出示1小时耕地公顷的图示。第二步分析求公顷的是多少的算理,就是把公顷平均分成5份,取其中的1份,也就是把1公顷平均分成(25)份,每份是1公顷的,取其中的1份,就是1。所以:

  =1(根据分数乘整数的法则计算)

  =

  =

  (2)教学公顷的是多少的计算方法

  求小时耕地多少公顷,就是求公顷的是多少?算式是:。第一步先出1小时耕地公顷的图示。第二步分析求公顷的是多少,就是把公顷平均分成5份,也就是把1公顷平均分成(25)份,每份就是,取其中的1份是1,取3份就是3所以:

  =3(根据分数乘整数的法则计算)

  =

  =

  (3)推导出计算法则:

  ==

  由

  ==

  推出一个数乘以分数的计算法则:分数乘分数,用分子相乘的积做分子,用分母相乘的积做分母。

  (4)强调:为了计算简便,能先约分的一定要先约分再乘。

  3.分数计算法则的统一:

  因为整数看作:,所以分数乘整数也可以转化为分数乘分数的形式.所以分数乘分数的计算法则对于分数乘整数和整数乘分数都适用。可以直接将整数看作分子与分母进行约分。但开始做分数乘整数或整数乘分数的题型时,有的学生经常会将整数与分子约分造成错误,所以教学时要加以强调,多做练习巩固。

  课题三:分数的乘加、乘减混合运算

  教材分析:

  分数乘加、乘减混合运算,是在分数乘法的基础上进行教学的,它本身属于分

  数四则混合运算的一部分内容。便于更好地区分分数乘法与分数加、减法的计算方法,提高计算的熟练程度。

  分数乘加、乘减的混合运算的运算顺序和整数乘加、乘减的混合运算的运算顺序相同,教学中可以通过复习整数乘加、乘减的混合运算的运算顺序,采取以旧带新的方法理解分数乘加、乘减的混合运算的运算顺序.此内容难度不大,完全可以放手让学生自习完成。

  教学策略:

  教学程序可设计为:自习--讨论--教师点拨

  关键是确定顺序:理解分数乘加、乘减混合运算的运算顺序与整数的运算顺序相同:含有两极运算,要先算第二级,再算第一级.

  课题四:整数乘法运算定律对分数同样适应

  教材分析:

  整数乘法运算定律对分数乘法同样适应,但要让学生明白:整数利用乘法运算定律计算时,目的是为了凑整数,使计算简便;而分数利用乘法运算定律计算时,目的是为了约分使它变成整数或变成比较简单的分数,使计算简便。本节的教学重点应放在让学生多观察题型的特征,分析是否可以运用定律进行简便计算,使学生在实际计算中领会应用运算定律进行简便计算的方法,达到提高学生计算的熟练度和准确度。

  教材第9页的3组题型只是起到说明左右两边的算式相等的作用,并不能起到说明使计算简便的作用。建议补充能够反映利用乘法结合律和分配律使计算简便的题型。

  教材第10页例5、例6只是一般的简便计算题型,而课后的练习和单元卷或其它的书籍,却经常出现象87和99+的类型题,诸如此类题目,对于部分学生来说,是存在一定难度的,建议教学时补充适当的例题,帮助学生击破难点。

  重、难点突破策略:

  1.通过课本3组算式和以下的几组算式,说明整数乘法运算定律对分数乘法同样适应。

  =

  (15)=(15)

  (+13)=+13

  2.复习乘法运算定律,同时说明整数运用定律目的是为了凑成整数使计算简便,而分数利用定律目的是为了约分使得到的积变成整数或变成较简单的分数,使计算简便。

  ab=ba

  (ab)c=a(bc)

  (a+b)c=ac+bc

  3.教学例5、6(可由学生合作完成)

  4.补充例题:

  (1)8785怎样简便计算?

  此类题目有些学生往往不知道拆哪一个数,教学时要把重点放在为什么要拆87为(86+1)、变85为(86-1)的算理上。

  (2)99+

  ①讲明白如何将原题变成两个积的和:99+1

  ②对照乘法分配律公式,讲明白如何提取相同因数(只提取一个)(因为有的学生会提出两个,造成错误),如何把剩下的两个因数相加的算理。

  错例分析:

  1.约分时找错对象,出现了内战--分子杀分子。

  13(1)

  例如:=6(21)3=

  对于这类症状的治疗方法难度不大,只要叫患者在做题时,花多一点时间,将整数几写成,再运用分数计算法则计算,训练一段时间后应该会有好转。

  2.利用乘法分配律进行分配时出现了分配不公平的弊端。

  例如:(+)12

  =12+

  =9+

  =9

  此类题是学生经常做错的题,做题时可以让学生添加弧线来强调分配的原则,一定要使到分配公平公正。

  如:(+)12

  特别是象(86+1)的题型,由于第二个加数是1,学生经常没有将1乘上外面的因数。如果使用了上面的弧线记号就会大大降低了错误律。

《分数乘法》教学设计3

  教学内容:

  苏教版义务教育教科书《数学》六年级上册第29~30页例2、练一练,第32~33页练习五第6~9题。

  教学目标:

  使学生理解一个数乘分数的意义,知道求一个数的几分之几可以用乘法计算。

  通过操作,观察,培养学生的推理能力,发展学生的思维。

  教学重点与难点:

  一个数的几分之几是多少的实际问题的数量关系和解题方法。

  教具:长方形纸、彩笔、水杯

  教学过程:

  一、创设情境

  同学们,上节课我们学习了分数乘整数的计算方法,你想不想继续往下学?在学新课之前我们先来复习一下上节课的内容。

  复习:计算下面各题,并说出计算方法。

  上面各题都是分数乘以整数,说一说分数乘以整数的意义以及计算方法

  二、探究新知

  今天,我们来学习一个数乘以分数的意义和计算方法。

  教学例2

  出示例2的图,然后出示条件:

  小芳做了10朵绸花,其中是红花,是绿花。

  引导学生理解:“其中”是什么意思?

  使学生明白是10朵中的,然后出示问题

  红花有多少朵?

  引导学生看图理解:求红花有多少朵,就是求10朵的

  让学生应用已有的知识经验解决。

  学生可能列式:10÷2=5(朵)

  在此基础上指出:求10朵中的是多少,还可以用乘法计算。

  教师说明要求,学生列式解答。

  在此基础上教学第(2)题,怎样解决

  (2)绿花有多少朵?

  可以先让学生在图中圈一圈,借助圈的过程理解求绿花有多少朵,就是把10朵平均分成5份,求这样的`2份是多少,引导学生用以前的方法解决。

  10÷5×2=4(朵)

  在此基础上告诉学生:求10朵的是多少也可以用10×来计算。

  学生独立计算,订正时指出:

  计算10×可以先约分

  2、引导学生进行比较

  通过对上述两个问题的计算,你明白了什么?

  小组讨论:10朵的,也就是把10朵花平均分成5份,求这样的2份是多少。计算10×时要先约分,实际上也就是先用10÷5,求出1份是多少,再乘2,求出2份是多少。

  引导小结:求一个数的几分之几是多少,可以用乘法计算。

  三、练习

  1、做练一练的第1题。

  先让学生根据题意涂色,然后列式解答。

  2、做练一练的第2题。

  通过填空使学生进一步明确:求一个数的几分之几是多少,可以用乘法计算。

  3、做练习五第6题。

  4、做练习五第8题。

  提问:求月季和杜鹃各多少棵时,为什么乘的分数不一样?

  5、做练习五第9题。

  比较三道算式的计算方法,你有什么体会和大家分享?

  四、总结

  本节课学习了那些内容?通过学习你有那些收获?还有那些疑问?

  五、作业

  完成练习五第7题。

《分数乘法》教学设计4

  1、使学生理解分数乘法的意义,掌握分数乘法的计算法则,并能熟练地进行计算。

  2、使学生掌握分数乘加、乘减混合运算,理解整数乘法运算定律对于分数乘法同样适用。

  3、使学生理解分数乘法应用题中的数量关系,会解答求一个数的几分之几是多少的应用题。

  4、使学生理解倒数的意义,掌握求倒数的方法。

  单元重点:

  分数乘法的意义和计算法则。

  单元难点:

  1、理解分数乘法的意义,根据分数乘法的意义去解答这类应用题。

  2、分数乘法计算法则的推导。

  1、分数乘法

  (1)分数乘整数

  教学目标:

  1、在学生已有的分数加法及分数基本意义的基础上,结合生活实例,通过对分数连加算式的研究,使学生理解分数乘整数的意义,掌握分数乘整数的计算方法,能够应用分数乘整数的计算法则,比较熟练地进行计算。

  2、通过观察比较,指导学生通过体验,归纳分数乘整数的计算法则,培养学生的抽象概括能力。

  3、引导学生探求知识的内在联系,激发学生学习兴趣。通过演示,使学生初步感悟算理,并在这过程中感悟到数学知识的魅力,领略到美。

  教学重点:

  使学生理解分数乘整数的意义,掌握分数乘整数的计算方法。

  教学难点:

  引导学生总结分数乘整数的计算法则。

  教学过程:

  一、复习

  1.出示复习题。

  (1)列式并说出算式中的被乘数、乘数各表示什么?

  5个12是多少?9个11是多少?8个6是多少?

  (2)计算:

  ++=++=

  二.引出课题。

  ++这题我们还可以怎么计算?今天我们就来学习分数乘法。

  1、利用++教学分数乘法。

  (1)这道加法算式中,加数各是多少?(都是)

  (2)表示几个相同加数的和,我们还可以用什么方法来计算?怎么列式?(乘法,3)

  (3)++=9,那么++=3,所以3=____________=9。同学们想想看,3=9计算过程是怎样的?谁能把它补充完整。

  2、出示例1,画出线段图,学生独立列式解答。

  (1)引导学生看图,理解人跑一步的距离相当于袋鼠跳一下的,就是把袋鼠跳一下的距离即这一整条线段看作单位1。把这条线段平均分成11份,其中的2份就表示人跑一步的.距离。

  (2)引导学生根据线段图理解,人跑一步是袋鼠跳一下的,那么人跑3步的距离相当于袋鼠跳一下的几分之几?就是求3个是多少?(列式:3=)

  3、结合以上两题,归纳出分数乘整数的计算法则:

  分数乘整数,用分数的的分子和整数相乘的积作分子,分母不变。

  4、练习:

  练习完成做一做第2题。

  5、教学例2

  (1)出示6,学生独立计算。

  (2)根据计算结果,学生观察讨论:乘得的积是不是最简分数?应该怎么办?

  (3)学生通过自己的想法的来约分:A、先约分再计算;B、先计算得出乘积后约分。

  (4)对比,让学生体会先约分再计算的方法比较简便,同时向学生说明先约分的书写格式。三、练习

  1、完成做一做的第一题。(提醒学生,计算前先观察分数的分母与整数是否可以约分,养成先约分在计算的习惯)

  2、做一做第3题。(先让学生说说解题思路,讨论先算什么可以使计算简便。如果用连乘算式,要提醒学生先约分再计算。)

  三、作业

  练习二第1、2、4题。

《分数乘法》教学设计5

  教学目的:

  1.使学生掌握分数乘以整数的意义、算理和法则。

  2.培养学生的知识迁移能力。

  教学重点:学生对计算法则的掌握,以及在计算中能约分的要约分。

  教学难点:学生对算理掌握。

  教学过程:

  一、引探准备:

  1、 4个7连加是多少?怎样计算?

  2、还可以怎样计算也得28呢?

  3、如何列式?为什么这样列式?

  4、学生小结整数乘法的意义。

  二、引探过程:

  1、今天我们一起研究分数乘法中分数乘以整数这部分知识。

  2、出示例1:一个修路队每天修路3/10千米。3天修多少千米?

  3、学生读题,分析。

  4、问:你想怎样计算?这两种方法都行吗?为什么?(板书)3/10+3/10+3/10 3/10×3

  5、学生小结:分数乘法的意义(分×整)是什么?(相同加数和的简便运算)

  6、3/10×3如何计算?(学生讨论)3/10×3=3/10+3/10+3/10=3+3+3/10=3×3/10=9/10(千米)

  7、问:3×3/10是怎么来的'?

  8、谁能说说分数乘以整数是怎么算的?

  9、小结法则:分数乘以整数,用分数的分子和整数相乘的积做分子,分母不变。

  10、练习:说出3/17×5和4/15×6的意义并计算。

  11、指书比较4/15×6还有更简便的方法吗?

  12、小结:分数乘以整数时怎么算简便?

  三、引探总结:

  3/18×6 2/5×15 3/7×6

  四、引探实践:

  你认为今天那些知识最让你感兴趣?

《分数乘法》教学设计6

  教学内容:

  浙教版第十一册第103页例1例2,练习十七题。

  教学目标:

  1、掌握求一个数与它的几分之几的差(和)是多少的应用题的数量关系,并能正确解答。

  2、通过分析、比较,培养学生善于思考问题提出问题的能力。

  3、培养学生良好的审题习惯。

  4、渗透环保观念和终身学习观念。

  教学重点和难点和关键

  教学重点:分析题中的数量关系和掌握解题思路,并能正确解答。

  教学难点:1、寻求所求问题对应的几分之几。2、弄清两种不同的解题思路。

  教学关键:1、确定单位“1”。2、找出所求问题占单位“1”的几分之几。

  教学过程:

  一、复习铺垫

  1、找单位“1”

  (1)一本书,已经看了1/4,还剩几分之几?

  (2)实际投资是计划投资的4/5。

  (3)男生25人,占全班人数的5/9。

  2、口答:

  (1)一堆煤,运走了3/5,还剩几分之几?

  (2)女生人数比男生人数多1/3,女生比男生多的人数占( )的1/3。

  (3)白兔比黑兔少1/4,白兔是黑兔的几分之几?

  二、创设情景、引入新知

  1、你们喜获吗?鸟类种数减少了,就意味着许多美丽的鸟类从此就永远消失了。你们知道为什么吗?由于人类的这些行为,有的鸟类灭绝了,还有一些鸟类,尽管还存在,但数量已经很少了,如果再不加以保护,也将很快灭绝掉。丹顶鹤就是这样的一种鸟类。丹顶鹤竖家的一级保护动物,是我国特产鸟类,群居黑龙江省的扎龙,丹顶鹤生活特别有规律,它体姿优美文雅、风貌优秀、翩翩起舞可与孔雀开屏媲美,是长寿动物与龟并称,古人将它作为长寿和幸福的象征,所以特别受中国人的钟爱。

  2、今天老师还给大家带来了几条有关丹顶鹤的信息。

  出示信息1:国家一级保护动物野生丹顶鹤,20xx年全世界约有20xx只,我国占其中的1/4。

  根据这些信息:你能算出20xx年我国约有多少只丹顶鹤吗?怎样列式?你是怎么想的?

  (20xx×1/4=500(只),求20xx只的1/4是多少?)

  3、如果我们把我国约有多少只?这个问题去掉,你能提出哪些问题?(外国约有多少只?)

  出示信息2(例4):

  揭示课题:这就是我们今天共同探讨的问题“稍复杂的求一个数的几分之几的应用题”(板书课题)

  三、引导探究,解决问题

  1、请同学们把信息2表达的意思用线段图表示出来。

  展示并口述画的线段图。

  2、是把什么看着单位“1”?平均分成几份?(1/4)表示谁占谁的几分之几呢?怎样解答这道题呢?请同学们根据线段图列出算式。(先立解答,师巡视,再交流)

  3、两名学生板演两种解法。

  4、你怎样想的?能说出解题思路吗?(学生口述思路,教师在线段图上展示)

  方法一:把全世界的丹顶鹤的只数看着单位“1”,先求出我国的只数,再用总只数减去我国的只数,剩下的就是其他国家的只数。

  方法二:把全世界的丹顶鹤的只数看着单位“1”,先求出其他国家占总只数的几分之几,再求出其他国家的只数?

  5、比较一下,这两种解法有什么区别?有什么联系?(学生小组交流、汇报。)

  〈1〉相同点:单位“1”相同。

  〈2〉不同点:第一种解法是用总只数减去我国的只数算出其它国家的。第二种解法是先求出其他国家的只数占总数的几分之几,再用总只数乘这个几分之几,就算出其他国家有多少只。

  四、再次探索

  1、教师引言:正如前面所说:丹顶鹤是“长寿和幸福”的象征,人们称它为仙鹤,因此我国在扎龙专门设立自然保护区又誉为“鹤的'乐园”。在人们的得力保护下,近两年来,丹顶鹤的数量逐年增多,请看下面信息:

  出示信息3:20xx年我国约有500只丹顶鹤,20xx年我国的丹顶鹤的只数比20xx年的只数多4/5,20xx年我国约有多少只?

  2、请同学们默读信息3,已知什么?要求什么?理解哪一句话对解题最有帮助?怎样理解20xx年我国丹鹤的只数比20xx年的只数多呢?(把20xx年500只丹顶鹤看作单位“1”,20xx年比20xx年多的只数是20xx年只数的4/5)

  3、(师生齐画线段图)这道题有几个不同的数量相比,画几条线段图更好表示?(用两条线段表示)

  教师引导学生画出20xx年的线段,然后让学生立完成余到此为下部分,一人板演。(巡视)

  4、展示线段图并叙述。

  指线段图引导分析:我们把什么看着单位“1”?平均分成几份?把20xx年的只数分成了几部分?哪两部分?(一部分与20xx年同样多,另一部分比20xx年多2/5。)

  5、请同学们根据线段图列出算式。(师巡视,指名板演两种代表性的解法)

  6、你能说出解题思路吗?

  (第一种解法:先求多的只数+20xx年的只数=20xx的只数,第二种解法:先求出20xx年占单位“1”的几分之几,或20xx年是20xx年的(1+4/5)倍,再求20xx年的只数;也就是求500只的(1+4/5)倍是多少)

  五、回顾小结

  1、刚才同学们用自己的聪明才智解决了以上问题,现在我们一起研究信息2和信息3这两问题有什么共同特点。

  (信息2把总数20xx只分成两部分,一部分是我国的只数,另一部分是其它国家的只数。信息3是把20xx年和20xx年相比,把20xx年的只数分成两部分,一部分是和20xx年的只数同样多,另一部分比20xx的只数多2/5。

  2、相同点:

  单位“1”的数量都是已知的。

  3、没有直接告诉所求问题占单位“1”量的几分之几,解题时需要用单位"1"的量减去或加上它的几分之几,或者先算出要求的数量占单位"1"的几分之几,再用单位"1"的量乘这个几分之几。)

  4、指导学生看书例题5,完成课本内容并质疑问难。

《分数乘法》教学设计7

  教学内容:人教版小学数学教材六年级上册第13~14页例8及相关练习。

  教学目标:

  1、使学生理解和掌握连续求一个数的几分之几是多少的问题的数量关系,掌握分数连乘法的计算方法,并能正确计算。

  2、让学生在“用数学”活动中,学会收集、选择和加工信息,在共同探讨中培养学生的合作意识以及分析问题、解决问题的能力。

  教学重点:理解掌握连续求一个数的几分之几是多少的问题的数量关系,掌握解题的基本方法。

  教学难点:在用分数连乘的方法解决实际问题的过程中,理解单位“1”“分率”与所对应的量的相对性。进而帮助学生深刻理解单位“1”“分率”与具体数量之间的一一对应关系。

  教学准备:课件、学具。

  教学过程:

  一、复习引入,唤醒旧知

  1、找一找,谁是表示单位“1”的量:

  (1)足球的个数是篮球的;

  (2)女生人数与男生人数的相等。

  2、你能解决这两个问题吗?

  (1)篮球有35个,足球的个数是篮球的,足球有多少个?

  (2)六(1)班有男生25人,女生人数与男生人数的相等,六(1)班有女生多少人?

  3、揭题:这节课我们就继续利用单位“1”的量,来解决更多的问题。

  【设计意图】复习环节中两个练习题的设计,有层次、有梯度地复习了有关单位“1”的知识内容,目的是让学生熟悉单位“1”、分率与具体量之间的一一对应关系,为学习新知做好铺垫。

  二、自主探究,思辨交流

  (一)阅读与理解

  出示例8情境图:这个大棚共480 m2,其中一半种各种萝卜,红萝卜地的面积占整块萝卜地的。红萝卜地有多少平方米?

  你获取了哪些数学信息呢?

  整个大棚的面积是(XX)。

  萝卜地的面积占整个大棚面积的(XX)。意思是说以(XX)为单位“1”,(XX)是(XX)的(XX)。

  红萝卜地的面积占萝卜地面积的(XX)。意思是说以(XX)为单位“1”,(XX)是(XX)的(XX)。

  要求的是(XX)的面积。

  【设计意图】审题是解决问题的第一步,引导学生了解题目中有哪些数学信息,有助于提高学生收集、处理、分析有效的'数学信息的能力,继而提高学生提出问题、分析问题的能力。真正将课标提出的“四基能力”落实在课堂之中。

  (二)分析与解答

  1、分析:如果我们用一张长方形的纸来表示整个大棚,你能折出或画出红萝卜地的面积吗?

  学生动手操作。

  2、解答:看着这张图,你能解决这个问题吗?(学生尝试解决。)

  3、交流:谁来说说你是怎么解决的?

  (1)先求萝卜地的面积,算式是480×=240(m2);

  再求红萝卜地的面积,算式是240×=60(m2)。

  思辨:求萝卜地的面积时,谁是表示单位“1”的量?(整个大棚面积)

  求红萝卜地的面积时,谁是表示单位“1”的量?(萝卜地面积)

  利用上述图例,引导学生整理、思考上述思辨问题,并得出:连续两步求一个数的几分之几是多少,这两步中表示单位“1”的量是不同的。

  (2)先求红萝卜地占大棚面积的几分之几。(老师问:你能在图上指出红萝卜地占大棚面积的几分之几吗?)算式是×=。

  再求红萝卜地的面积,算式是480×=60(m2)。

  思辨:这两种方法有什么相同点和不同点,你能发现什么?

  学生充分发表意见。

  师小结:今后解题时一定要认真分析题意,想好先算什么,再算什么,既可以用分步算式计算,也可以列综合算式计算,这就是我们这节课要学习的连续求一个数的几分之几是多少的问题。

  【设计意图】在本环节的教学中,主要采取自主探究的形式,让学生根据信息进行积极思考、尝试解决、思辨交流,调动全体学生参与学习活动的积极性。

  (三)回顾与反思

  我们求出的红萝卜地的面积是60 m2,这个答案是否正确呢?你能用自己喜欢的方法检验一下吗?

  生:红萝卜地的面积是60 m2,60÷240=,确实是占萝卜地面积的。

  萝卜地的面积是240 m2,240÷480=,正好是整个大棚面积的一半。

  生:从折纸中,我们可以很清晰地看出,红萝卜地、萝卜地和整个大棚的面积之间的数量关系符合题意。

  【设计意图】让学生对自己的探索过程进行回顾与反思,是对自己的学习活动进行的有效自我调节,是智慧成熟的标志。可以培养学生反思的意识,使学生养成反思的习惯,提高学生反思的能力,进而使学生调整学习过程,改善学习策略,促进自主学习能力的提高。

  三、巩固练习,强化认知

  1、教材第14页做一做:咱们班36人,的同学长大后想成为老师,想成为科学家的人数是想当老师人数的,多少名同学想成为科学家?

  你能用几种方法计算呢?

  说说你的分析思路,第一步是先求什么?

  2、解答教材第16页练习三的第1~3题。

  (1)人体血液在动脉中的流动速度是50厘米/秒,在静脉中的流动速度是动脉中的,在毛细血管中的流动速度只有静脉中的。血液在毛细血管中每秒流动多少厘米?

  第一种方法先求什么?再求什么?

  先求血液在静脉中的流动速度,再求血液在毛细血管中的流动速度。

  算式是50××=(厘米)。

  第二种方法先求什么?再求什么?

  先求血液在毛细血管中的流动速度是在动脉中的流动速度的几分之几,再求在毛细血管中的流动速度。

  算式是50×=(厘米)。

  (2)海象的寿命大约是40年,海狮的寿命是海象的,海豹的寿命是海狮的。海豹的寿命大约是多少年?

  第一种方法先求什么?再求什么?

  先求海狮的寿命,再求海豹的寿命大约是多少年。

  算式是40××=20(年)。

  第二种方法先求什么?再求什么?

  先求海豹的寿命是海象的几分之几,再求海豹的寿命大约是多少年。

  算式是40×=20(年)。

  (3)芍药的花期是32天,玫瑰的花期是芍药的,水仙的花期是玫瑰的。水仙的花期是多少天?

  第一种方法先求什么?再求什么?

  先求玫瑰的花期,再求水仙的花期是多少天。

  算式是32××=15(天)。

  第二种方法先求什么?再求什么?

  先求水仙的花期是芍药的花期的几分之几,再求水仙的花期是多少天。

  算式是32×=15(天)。

  【设计意图】提高学生运用所学知识解决实际问题的能力,从而加深对连续求一个数的几分之几是多少的问题的认识。练习的设计以趣味性和层次性为原则,分别安排了“基础性练习”“拓展性练习”等练习形式,检验学习效果,培养学生运用所学知识解决实际问题的能力,把教学目标真正落实到位。

  四、全课总结,提升认识

  (一)师生共同小结:本节课我们学习了哪些内容?

  (二)师小结:

  1、连续求一个数的几分之几是多少,相当于把两个“求一个数是多少”的问题整合在一起。要先想清楚第一步求什么,特别要注意第一步计算和第二步计算中表示单位“1”的量是不同的。

  2、我们可以借助折纸或画图的方法理解数量关系。

  【设计意图】通过小结,让学生自主回顾本课所学知识并进行简单的梳理,同时通过教师的归纳与提炼,让学生理解连续求一个数的几分之几是多少的问题,渗透“数形结合”的数学思想。

  五、布置作业,课外延伸

  在实际生活中,我们遇到过需要“连续求一个数的几分之几是多少”的问题吗?请你课后去收集一下吧。

  【设计意图】用数学的眼光看生活,用学过的数学知识去解决实际生活中的问题,可以体现知识的价值,提升学生学习数学的积极性,获得学习数学的成功感。

《分数乘法》教学设计8

  教学内容:

  分数与整数相乘(第38~39页上的例1、例2)

  教学目标:

  1、使学生通过自主探索,理解分数乘整数的意义,知道“求几个几分之几相加的和”可以用乘法计算,初步理解分数乘整数的计算方法。

  2、使学生进一步增强运用已有知识经验探索并解决问题的意识,体验探索学习的乐趣。

  教学重点:

  分数乘整数的意义和计算方法。

  教学难点:

  在探索中自己发现计算方法。

  教学策略:

  从分数的意义中导入,从分数加法中理解分数乘整数意义与计算方法。

  教学预案:

  一、导入

  1、出示例1中的长方形直条,标出长是“1米”。

  2、提问:做一朵绸花用3/10米绸带,你能从直条图上表示出已知条件吗?你是怎样想的?(体会到3/10米就是1米的3/10)

  二、探索

  1、现在小芳要做3朵这样的绸花,一共要用多少米绸带?

  请学生上台操作:在直条图上涂色表示要用的部分。并说说你是怎么想的?

  2、如果用算式来表示3朵绸花所用的米数,该怎样列式?

  生报,师板书。(可能有连加法算式,也可能有乘法算式)

  3、你会计算结果吗?你是怎样想的?

  4、组织交流。

  引导学生从加法算式中体会到3/10与3相乘的意义与计算方法。

  5、揭示课题:分数与整数相乘

  6、如果做5朵这样的绸花呢?该怎样列式?结果是多少?请大家在自备本上独立完成。

  7、组织交流:你是怎样列式的?还可以怎样列式?结果是多少?为什么不列加法算式了?

  学生说明理由。

  在学生计算时,教师可以作指导,分别介绍两种不同的计算方法:

  (1)先分子与整数相乘,再约分;

  (2)先约分,再相乘。

  三、归纳

  1、通过刚才两道分数与整数相乘的计算练习,你发现分数与整数相乘可以怎样计算?先独立思考一下,再把计算方法和同桌交流一下。

  2、组织交流。

  四、巩固

  1、练一练第一题:让学生先涂色,然后把算式列在旁边。

  2、练习八第一题:看图在书上分别写出加法算式和乘法算式。说明想法。

  追问:能不能写 1/7╳6?为什么?体会到要根据图意来列式。

  3、练一练第二题:学生先独立完成,指名板演,在组织评价,提醒学生要注意书写格式。

  4、练习八第3题:读题理解题意,独立解决在书上,再组织交流:你是怎样列式的?为什么怎样列式?引导学生体会到“求几个几分之几是多少”用乘法计算。再追问:结果是多少?你是怎样计算的?引导学生进一步巩固分数乘整数的计算方法。

  5、练习八第4、5题:(教学方法同第3题)

  6、机动补充:

  (1) 直接说出得数

  2/7╳4= 9/5╳5= 1/7╳7 =

  20╳7/20 = 7/60╳30= 1/2╳5=

  (2)小光写一个大字用3/4分钟。照这样的速度,写16个大字要用多少分钟?

  (3)一辆汽车每分行驶7/6千米,平均每小时可行驶多少千米?

  五、课堂作业:练习八第2题。

  课前思考:

  分数乘整数是分数乘法的第一教时,是学生理解分数乘法意义的起点。是在学生已学过整数乘法的意义和分数加法计算的基础上进行教学的。例1以做绸花为素材,引导学生初步理解求几分之几是多少可以用乘法计算,掌握分数与整数相乘的计算方法。

  这节课以计算为主线,在研究算法的过程中中时感悟运算的.意义。

  课前思考:

  首次教学分数乘法,教材除了从实际问题引出,还尽量与整数乘法靠近,教学中要充分利用学生已有的知识、经验,构建新运算的意义与算法。创造迁移的条件,引导学生主动写出分数乘法算式;营造探索的氛围,放手让学生创新分数乘整数的方法。高教导设计的教学预案中可以看出已经体现了这一点,在教学例1的第2小问时让学生独立尝试计算。我想在教学时也可以大胆尝试,但在学生尝试计算后要马上组织学生交流,可以先同桌之间交流,再请个别学生全班交流。交流时主要联系分数乘法的意义来解释计算过程,并通过这一题的计算明确:计算结果不是最简分数的,要约分成最简分数。

  教学中要把握:通过例1的学习,比较加法算式和乘法算式,实现原有运算概念的迁移:求几个相同分数相加的和,用乘法算比较简便。分数乘法算式和整数乘法算式一样,不区分被乘数和乘数,求3个3/10是多少,算式3×3/10和3/10×3都可以。通过让学生研究分数乘整数的算法,把“分子相加、分母不变”加工成“分子与整数相乘,分母不变”,从而获得新的计算方法。尤其是在方框里填数: 3/10+3/10+3/10=□+□+□/10=□×□/10,要让学生经历“分子相加”转化成“分子与整数相乘”的过程,建构了新的计算方法。

  说明:练习八中的第5题暂时还不能练习,因为我们将第二单元的内容要放在第四单元后进行教学,所以本题要改为其他练习。

《分数乘法》教学设计9

  教学目标:

  1、结合具体情境,探究并理解分数乘整数的意义;

  2、探究并掌握分数乘整数的计算方法,并能正确计算;

  3、能正确运用“先约分再计算”的方法进行计算。

  4、能运用所学知识解决生活中简单的实际问题。

  教学重点

  1、结合具体情境,探索并理解分数乘整数的意义;

  2、探索并掌握分数乘整数的计算方法,并能正确计算;

  教学难点:

  能正确运用“先约分再计算”的方法进行计算。

  教学准备:

  多媒体课件PPT,卡片,记号笔等

  教学过程:

  环节一:创设情景,初步探索

  1、谈话引入:一张纸,可以剪出很多同样的图案来,老师在剪纸的过程中发现这里居然也蕴含了数学知识,今天特意带来了,我们一起来研究研究它,有没有兴趣?

  2、出示情境图

  (1)一张彩纸,什么意思?(课件演示)

  (2)出示问题:1个占整张彩纸的1/5,3个占整张彩纸的几分之几?能解决这个问题吗?先独立思考,完成学习单一的第一题,看谁的解决方法多?

  3、学生自行思考完成,巡视要求写出具体的过程,让不同做法的同学板演。

  4、学生汇报:(学生可能出现的情况)

  预设第一种方法:用加法算的:就是1/5+1/5+1/5=1+1+1/5=3/5,3个1/5相加,因为同分母分数相加,分母不变,分子相加。

  预设第二种方法:用乘法算的:1/5×3=1×3/5=3/5。求3个1/5,可以用1/5×3来计算,它表示3个1/5相加,根据同分母分数相加的.方法,分母不变,分子相加,分子3个1相加可以写成1×3,得出3/5。

  5、还可以怎样列式?

  师:不仅能用旧知识解决问题,还探索出新方法。由此可见,求几个相同的分数的和,可以用乘法计算。这与整数乘法的意义是相同的。(把加法的板书和乘法的板书有机的结合起来。)

  环节二:合作学习,探究新知

  1、我们来探究:(小组活动)

  师:你们的独立思考能力杠杠的,我还想见识见识你们小组合作学习的能力。所以,我们来探究:2个3/7的和是多少?涂一涂,填一填,算一算,说一说。

  出示小组活动要求,明确要求:涂一涂,填一填,算一算,议一议,写一写,贴一贴。

  2、小组代表汇报。

  3、你认为这计算过程中,哪些部分可以省略?

  4、轻松练笔

  师:我们参与,我们交流,我们发现。用我们的发现练练笔吧。

  1、独立计算,在小黑板上展示,每人一题,组长检查指导。说明:全对的每组奖励2颗星。

  2、小组长交叉评分

  3、总结:谁来说说分数与整数相乘的计算方法?谁还想说?学生用自己的语言表达。(出示板书:分数与整数相乘,分母不变,分子和整数相乘)

  环节三:课堂检测,巩固内化

  1、完成课堂检测题

  学到知识了吗?老师要考考你们,敢不敢接受挑战?请在4分钟内完成课堂检测题。

  2、集体评讲。

  环节四:总结反思,升华新知。

  本节课有什么收获?还有什么不明白的地方吗?点评各组的表现。

  环节五、作业。

  课本23页练一练第3题,24页第7题。

  六、板书。

《分数乘法》教学设计10

  教学目标:

  1、培养学生的计算能力,自主、合作探索意识及解决问题策略优化的思想能灵活运用所学计算方法解决生活中的简单问题。

  2、让学生在课堂中交流学习数学的感受,获得学习成功的体验。

  教学重点:

  理解分数乘整数的意义,掌握分数乘整数的计算方法。

  教学准备:

  学生做的风筝

  教学过程:

  一、 复习

  1、1/2× 3表示的意义是什么?(让学生自己说一说,)

  2、分数乘整数的计算法则是什么?

  二、基础练习

  1、的3倍是多少?

  2、10个是多少?

  订正时说说每个算式表示的意义。

  三、专项练习

  1、自主练习第4、5、6题

  这三题是运用分数和整数相乘的知识解决实际问题的'题目。教学时,要让学生自主进行,重点放在探究列式的理由和计算的方法上。

  2、第8题是求正方形周长的题目。练习时,可让学生先回顾一下正方形周长的计算方法,然后列式计算。

  3、第7、10题

  这两道题是直接写得数的题目。练习时,可让学生先约分,然后进行口算,这样速度比较快一些。需要注意的是,教师在设计这样的题目时,数不宜过大,要求不宜过高。

  4、第9、12题

  这两道题是学生自己独立作,利用分数与除法的关系解决问题的。

  四、合作总结

  这节课你巩固了那些知识?

  五、创意作业

  同桌出题交换解答,交换批改,共同提高。

《分数乘法》教学设计11

  教学内容:

  P17~19连续求一个数的几分之几是多少的分数乘法应用题

  教学要求:

  1、使学生掌握连续求一个数的几分之几是多少的分数乘法应用题的解答方法,并会正确解答这类应用题。

  2、让学生进一步体验数学与日常生活的密切联系,在共同的探讨中培养合作意识。

  教学重点:

  理解题意,分析数量关系。

  教学难点:

  两次判断谁作单位“1”的量。

  教学过程:

  一、回顾旧知,复习铺垫

  1、指出下面每题中的两个量,应把谁看作单位“1”。

  (1)男生人数占全班的。

  (2)图书总数的是科技读物。

  2、指出下面各题中的两个分数,各把什么看作单位“1”。

  (1)苹果的重量是橘子的,梨的重量是苹果的。

  (2)篮球的个数是足球的,足球的个数得排球的。

  3、一根电线长10米,用去,还剩下这根电线的几分之几?还剩多少米?

  二、引导探索,学习新知

  1、揭示课题。

  今天我们来学习连续求一个数的几分之几是多少的分数乘法应用题。

  2、创设情境,引出例题

  小亮、小华、小新三人在说班里同学们理想,请看他们的对话:

  小亮:我们班有36人。

  小华:的同学长大后想成为教师。

  小新:想成为科学家的`人数是想当教师人数的。

  学生提出数学问题

  3、动手操作,理解题意,学生动手画线段图

  4、主动尝试,解答例题

  (1)讨论,学生交流解题方法,并尝试解答。

  (2)汇报,学生说解题过程,第一步求什么?第二步求什么?

  板书:想成为教师的人数:36×=12(人)

  想成为科学家的人数:12×=9(人)

  (3)追问:第一步求想成为教师的人数,就是求什么?

  第二步求想成为科学家的人数,就是求什么?

  三、巩固深化,拓展思维

  P18第4题。让学生说说每一步求的是什么?谁是单位“1”?

  四、小结

  在解答应用题时,每一步都要找准单位“1”,如果是求“一个数的几分之几是多少”,就用乘法进行计算。

  五、课堂练习,辅助消化

  1、P19第9、10题。

  2、P19第6题。

  六、课外补充,拓展延伸

  1、三个修路队合修一条公路,甲队修了12千米,甲队修的等于乙队的,丙队修的相当于乙队修的。丙队修了多少千米?

  2、有三筐苹果,第一筐苹果重28千克,第二筐苹果是第一筐的,第三筐苹果的重量比第二筐的多5千克。第三筐苹果重多少千克?

《分数乘法》教学设计12

  教学目标

  1.结合具体情境,进一步探索和理解分数乘整数的意义,并能够熟练准确的计算。

  2.能根据解决问题的需要,探究有关的数学信息,发展初步的分数乘法的能力。

  3.使学生感受到分数乘法与生活的密切联系,培养学习数学的良好兴趣。

  教学重点;:理解整数乘以分数的意义,并能证确计算。

  教学难点:运用所学的知识解决分数乘法的实际问题

  教学过程

  一、复习导入:

  1.2/3×2表示的意思是( )

  2.计算分数乘整数时,用分数的( )和整数相乘的积作( ),分 母( ).

  3.请学生计算下列分数乘法运算题。

  1/8×3 .3/10×4 .7/24×12

  二、情境创设

  教师出示课件课本情境图:小红有6个苹果,淘气的苹果是小红的1/2 ;笑笑的苹果是小红的1/3 ,淘气和笑笑各有几个苹果?

  1.教师让学生思考这个题,并对学生进行提问。

  2.引导学生分析,无论是淘气还是笑笑的'苹果数,都是以谁为标准的?两者都以小红的苹果数6为标准,我们把“小红的苹果数6”看做一个整体。淘气的苹果是6个的1/2,即把6个苹果平均分成2份,其中的份就是淘气的苹果数。教师出示课件图。还有其它分的方法么?学生交流。教师板书6×1/2

  3.教师提问学生说一说自己是怎样计算的?

  4.学生自己动手填完课本例题上的方格。

  5.怎样表示笑笑的苹果数?

  6.教师板书( 笑笑:6×1/3=2)

  7.总结分数乘法的意义就是求一个数的几分之几是多少。

  8 怎么计算呢?6×1/2 =6×1/2 =3 6×1/3=6×1/3=2教师和学生对比这两个题目的区别和联系。学生初步理解整数乘以分数的计算方法。

  三、巩固练习:

  1.计算8×3 /10 4× 3/10 24×3/8

  2.做课本5页试一试1题,36的1/4 和1/6 分别是多少?

  注意让学生体验求一个整数的几分之几是多少的数学意义。

  3 . 试一试2,学生说说:“打折”的意思?八折、九折分别表示什么意思?学生计算

  四、课堂小结:同学们,这一节课你学到了哪些知识?(提问学生回答)

  【板书设计】

  分数乘法(二)

  6× 1/2 = =6×1/2 =3 6×1/3==6×1/3=2

  整数乘以分数的意义:就是求整数的几分之几是多少?

  整数乘以分数的计算方法:用整数与分子相乘的积作分子,分母不变。能约分的要先约分。

  教学反思:本节课有以下优点:1.针对教材提供的情境,引导学生理解整数乘以分数的意义通过课堂活动使学生认识到分数乘法就在我们的生活中,学生对分数乘法的意义有了更深的理解。2.抓住了图形语言的直观性,借助图形理解整数乘以分数的意义,是自己的小课题研究落到了实处。

《分数乘法》教学设计13

  教学重点:

  1、掌握两步分数应用题的解题思路和方法。

  2、画线段图分析应用题的能力。

  教学难点:

  渗透对应思想。

  教学过程:

  一、复习、质疑、引新

  1.指出下面分率句中谁是单位1(课件一)

  ①乙是甲的;

  ②小红的身高是小明的

  ③参加合唱队的同学占全班同学的;

  ④乙的相当于甲。⑤1个篮球的价钱是一个排球价钱的倍。

  2.口头分析并列式解答

  ①小亮的储蓄箱中有18元,小华储蓄的钱是小亮的,小华储蓄了多少元?

  ②小华储蓄了15元,小新储蓄的是小华的,小新储蓄了多少元?

  3.引新:刚才复习的两个题,同学们完成的很好,现在将这两个小题,组成一道题,你还会解答吗?(这就是本节课要学习的新内容),出示课题--分数应用题。

  二、探索、悟理

  1.出示组编的例题

  例2小亮储蓄箱中有18元,小华储蓄的钱是小亮的,小新储蓄的是小华的,小新储蓄了多少元?

  学生审题后,教师可提出如下问题让学生思考讨论。

  ①小华储蓄的钱是小亮的,是什么意思?谁是单位1?

  ②小新储蓄的是小华的,又是什么意思?谁是单位1?

  思考后,可以让学生试着把图画出来。

  (演示课件)

  然后请同学说出思路,讲方法,教师同时将算法板书在黑板上。根据小华储蓄的`钱是小亮的,把小亮的钱看作单位1,可以求出小华储蓄的钱:。根据小新储蓄的是小华的,把小华的钱看作单位1,再标出小新的储蓄钱:。

  由此基础上试列综合算式:

  2.做一做

  小华有36张邮票,小新的邮票是小华的,小明的邮票是小新的,小明有多少张邮票?

  1)可先让学生一起分析数量关系,然后独立画图并列式解答。

  请一名中等学生板演。

  (张)

  (张)

  答:小明有40张。

  ③你能列综合算式吗?

  三、归纳、明理

  1.在上述两个题研究探索的基础上,师生共同讨论用连乘解答的题有什么特点?解题思路是什么?在充分讨论的基础上,老师可把解题思路用语言归纳一下。

  ①认真读题弄清条件和问题

  ②确定单位1找准数量关系

  根据分数乘法的意义,找准量、率对应关系,即谁是谁的几分之几。

  ③列式解答

  板书为:抓住分率句,找准单位1,

  画图来分析,列式不用急。

  2.质疑问难

  四、训练、深化

  1.联想练习根据下面的每句话,你能想到什么?

  ①苹果的个数是梨的,(如,梨是单位1;苹果少,梨多;苹果比梨少等)

  ②修了全长的

  ③现在的售价比原来降低了

  2.先口头分析数量关系,再列式解答。

  ①鹅的孵化期是30天,鸭的孵化期是鹅的,鸡的孵化期是鸭的,鸡的孵化期是多少天?

  ②3个同学跳绳,小明跳了120下,小强跳的是小明的,小亮跳的是小强的倍,小亮跳了多少下?

  3.提高题。

  六、板书设计

  分数乘法应用题

  小亮的储蓄箱中有18元,小华的储蓄的钱是小亮的,小新储蓄的钱是小华的。小新储蓄了多少钱?

《分数乘法》教学设计14

  教学内容:九年义务教育六年制小学教科书数学第十一册第9~10页的例4、例5,练习三的第1~6题。

  教学目的:

  1.使学生掌握带分数的乘法的计算方法,能够正确地进行带分数乘法的计算。

  2.使学生掌握分数连乘的计算方法,能够用比较简便的方法进行分数连乘的计算。

  教学过程:

  一、复习

  1.把下面各带分数化成假分数。

  让学生先说一说带分数化假分数的方法,然后再把带分数化成假分数。

  2.计算下面各题。

  12

  把全班学生分成三组,每组计算一道题,鼓励学生能口算的尽量口算。集体订正时,指名说一说计算的方法,复习分数乘以分数的计算法则。

  二、新课

  1.教学例4(带分数乘法)。

  出示例4。

  学生读题,明确题意。

  (1)教学带分数乘以整数的方法。

  教师:第一问要求什么?(黑板的长是多少米。)

  根据题目给出的条件应该怎样列式?

  教师根据学生的回答板书算式:1

  教师提问:1 能不能直接计算?(不能。如果有学生说出用乘法分配律来计算,应该肯定是正确的,但要说明,在一般情况下,用乘法分配律计算比较麻烦。所以我们要学习普遍适用的简便算法。)

  接着提问:我们已经学过分数乘以分数的计算法则,能不能把带分数的乘法转化成我们学过的方法进行计算呢?怎样才能把它转化成已学过的分数乘法?(把带分数化成假分数。)如果学生一时想不出来,教师可以进一步启发引导:

  在分数乘以分数的计算法则中,只提到分子相乘的积作分子,分母相乘的积作分母,而带分数除了有分子和分母,还有整数部分。如果把带分数化成只有分子和分母的'分数,我们就可以用分数乘以分数的计算法则计算了。那么,我们应该怎样把带分数转化成只有分子和分母的分数呢?(把带分数化成假分数。也就是要把1 变成假分数 ,然后再和2相乘。)

  根据学生的回答,教师板书计算过程: 2= 2= = (米)

  (1)教学带分数乘以带分数的方法。

  教师:第二问是求什么?(黑板的面积是多少平方米。)

  应该怎样列式?根据学生的回答,教师板书算式:

  这道题应该怎样计算呢?不必让学生回答,只要求思考。然后,让学生独立计算。教师巡视,了解学生掌握的情况,对学习有困难的学生进行个别辅导。

  学生做完后,指名说一说是怎样想的。

  教师:根据上面这道题第一问和第二问的计算,大家能不能说一说带分数乘法计算的一般方法?多让几名学生说一说。最后,进行简单归纳:分数乘法中有带分数的,通常先把带分数化成假分数,然后再乘。

  2.做教科书第9页的做一做。

  学生独立计算,教师巡视,对学习有困难的学生进行个别辅导。集体订正。

  3.教学例5(分数连乘)。

  教师可以根据本班的具体情况采取不同的教法。

  (1)如果学生对前面学习的知识掌握得比较好,可以适当放手。例如,让全班学生先在练习本上试算,然后让一些学生说一说他们是怎样计算的。教师把不同的计算方法都写在黑板上,让学生进行讨论,哪些方法的对的,哪些方法比较简便。通过讨论引导学生总结出三个分数相乘的简便算法:三个分数相乘,可以把带分数先化成假分数,再把所有分数的分子和分母约分,然后把约简的分子、分母分别相乘。

  (2)如果学生对前面学习的知识还存在一些问题,教师就要注意引导学生先按照一般的方法计算,然后再教学简便的算法。例如,在教学完一般的方法(例题中小新的算法)后,教师可以提问:还有没有更简便的计算方法?

  如果学生回答有困难,教师可进一步引导:

  我们能不能先把题目中的带分数都化成假分数?(可以。)

  然后,把题目中的两个带分数都化成假分数。

  接着看小强的约分方法。

  教师说明:这样做就可以把两步约分合并成一步,使计算更简便。

  最后,教师进一步说明,分数连乘在约分的过程,不必考虑计算的顺序,只要是分子和分母有哪两个数能约分就约分。使学生加深对简便算法的认识。

  4.做教科书第10页的做一做。

  (1)第1题。学生独立计算,教师巡视,注意了解学生中是否把所有能约分的分子、分母,都进行了约分。针对学生出现的错误及时给予指导和订正。

  (2)第2题。如果学生独立列式有困难,或学生列出的算式中有除法而无法计算,教师可以适当加以引导。先让学生想一想正方体的体积应该怎样计算。当学生说出正方体体积计算的公式后,再让学生计算。

  三、巩固练习

  1.做练习三的第1题的第一行(3道题)。

  学生独立计算,教师巡视,个别辅导,集体订正。

  2.做练习三的第2题的第一行(3道题)。

  学生独立计算,教师巡视,个别辅导,要提醒学生把所有能约分的分子、分母都进行约分。集体订正。

  3.做练习三的第5题。

  学生独立解答。教师巡视,个别辅导。集体订正时,指名说一说是怎样想的。

  对学有余力的学生,让他们思考练习三的第7*题。

  四、小结(略)

  五、作业

  练习三的第1、2题中没有做的题目,第3、4、6题。

  对学有余力的学生,可让他们思考教科书第11页下面的思考题。

《分数乘法》教学设计15

  教学内容:课本练习四的第6~10题。

  教学目的:

  1.使学生进一步掌握分数乘法应用题的数量关系,学会应用一个数乘以分数的意义解答分数乘法应用题。

  2.培养分析能力,发展学生思维。

  教学重点:正确分析数量关系,找准单位1

  教学难点:依题意正确画图教学过程:

  一、复习。

  1.先说出下列各算式表示的意义,再口算出得数。

  2.指出下面每组中的两个量,应把谁看作单位1。

  (1)梨的筐数是苹果的。

  (2)梨的筐数的和苹果的筐数相等。

  (3)白羊只数的等于黑羊的只数。

  (4)白羊的只数相当于黑羊的。

  3.教师给上面的第2题每个小题补充一个已知条件,再要求学生口头提出问题并解答。

  (1)有40筐苹果,梨的筐数是苹果的。()?

  (2)梨的筐数是和苹果的筐数相等,有40筐。()?

  (3)有40只白羊,白羊的只数的等于黑羊的只数。()?

  (4)白羊的只数相当于黑羊的,有40只黑羊。()?

  二、新授。

  1.出示例3。

  小亮的储蓄箱中有18元,小华储蓄的钱是小亮的,小新储蓄的是小华的。小新储蓄了多少元?

  (1)指名读题,说也已知条件和问题。

  (2)怎样用线段图表示已知条件和问题。

  先画一条线段,表示谁储蓄的钱数?为什么?

  学生回答后,教师画线段图。

  再画一条线段,表示谁储蓄的钱数?画多长?根据什么?学生回答:

  根据小华储蓄的钱数是小亮的,把小亮的钱数作为单位1,平均分成6份,再画出与这样的5份同样长的线段。

  然后画一条线段表示谁的钱数?画多长?根据什么?引导回答:

  根据小新储蓄的钱数是小华的,把小华的'钱数作为单位1,平均分成3份,再画出与这样的2份同样长的线段。

  教师画:

  (2)分析数量关系。

  引导学生说出,从已知条件或从问题分析,说出要求小新储蓄的钱数,必须先求小华储蓄的钱数。因此这是一道两步计算的应用题。

  (3)确定每一步的算法,列式计算。

  ①求小华储蓄的钱数怎样想?

  引导学生回答:根据小华储蓄的钱数是小亮的

  把小亮的钱数看作单位1,就是求18的是多少,所以用乘法计算。列式:

  (元)

  ②求小新储蓄的钱数怎样想?

  引导学生回答:根据小新储蓄的钱数是小华的,把小华的钱数看作单位1,就是求15的是多少,所以也用乘法计算。列式:

  (元)

  把上面的分上步算式列成综合算式,该怎样列?

  (元)

  (4)检验,写答语。答:小新储蓄了10元。

  2.做一做。

  让学生独立完成课本第19页下的做一做,先画线段图表示已知条件和问题,独立解答后,进行订正。指名说一说自己是怎样确定计算方法的。

  3.小结。

  从上面的分数乘法两步应用题看,与前一节所学的一步应用题有什么相同点和不同点?解答这类应用题的关键是什么?怎样判断计算方法?

  学生回答后,教师归纳:今天学的是连续两次求一个数的几分之几是多少的应用题。解答这类应用题的关键是要能正确地判断第一步把谁看作单位1,第二步把谁看作单位1。

  三.巩固练习。

  完成练习四的第6、7题。

  四、全课小结。

  这节课我们共同研究了什么?

  解答这类分数乘法两步应用题关键是什么?

  五、布置作业。

  完成练习四的第8~10题。

  教学反馈:

【《分数乘法》教学设计】相关文章:

分数教学设计 02-12

分数教学设计04-13

分数乘法说课稿07-17

分数乘法说课稿01-17

笔算乘法教学设计12-07

《口算乘法》教学设计11-30

“认识乘法”教学设计07-30

《分数的意义》教学设计04-06

分数的意义教学设计04-02