《运算》教学设计

时间:2024-08-24 13:19:00 教学设计 我要投稿

《运算》教学设计

  作为一名人民教师,常常需要准备教学设计,教学设计是连接基础理论与实践的桥梁,对于教学理论与实践的紧密结合具有沟通作用。教学设计应该怎么写呢?以下是小编为大家整理的《运算》教学设计,欢迎阅读,希望大家能够喜欢。

《运算》教学设计

《运算》教学设计1

  教学过程

  谈话导入

  我们学过哪些运算?这些运算的意义是什么?相关的知识都有哪些?这节课我们就来系统地归纳、整理四则运算的知识。

  回顾与整理

  1、四则运算的意义。

  (1)我们学过哪些运算?举例子说明。

  生1:加、减、乘、除。

  生2:列举算式……

  (2)课件出示教材70页1题。

  庆祝“六一”。

  你能提出哪些数学问题?在解决问题的过程中,你用了哪些运算?

  预设

  生1:我根据第一幅图提出问题,两个同学一共折了多少只纸鹤?用加法计算,列式为26+39=65(只)。

  生2:我根据第一幅图提出问题,还要折多少只纸鹤?用减法计算,列式为120-26-39=55(只)或120-(26+39)=55(只)。

  生3:我根据第二幅图提出问题,一共需要多少钱?用乘法计算,列式为1。5×52=78(元)。

  生4:我根据第三幅图提出问题,扎蝴蝶结用了多少米彩带?用乘法计算,列式为18×=9(m)。

  生5:我根据第四幅图提出问题,平均每组有几名同学?用除法计算,列式为36÷4=9(名)。

  (教师结合学生的提问、解答,用课件展示相关算式)

  (3)结合上面的算式,完成下面的表格。

  (注意引导学生考虑全面,结合学生的回答,用课件展示下表)

  算式

  意义

  加法

  26+39=65

  把几个数合并成一个数的运算。

  减法

  120-26-39=55或120-(26+39)=55

  已知两个数的和与其中的一个加数,求另一个加数的运算。

  乘法

  1。5×52=78

  求几个相同加数的和的简便运算。

  18×=9

  求一个数的几分之几是多少。

  除法

  36÷4=9

  已知两个因数的积与其中的一个因数,求另一个因数的运算。

  (4)整数、分数、小数运算的哪些意义相同?

  预设

  生1:整数、分数、小数的加法、减法、除法的意义相同。

  生2:分数乘法的意义分两种情况,一种是求几个相同加数的和的简便运算,一种是求一个数的`几分之几是多少。

  2、四则运算的关系。

  (1)陈述加与乘、加与减、乘与除相互间的关系。

  预设

  生1:加法是最基本的运算,整数乘法是求几个相同加数的和的简便运算。

  生2:加法是把几个数合并成一个数的运算,而减法是知道总数和其中一部分,求另一部分,加法和减法是互逆关系,减法是加法的逆运算。

  生3:乘法是求几个相同加数的和的简便运算,除法是把一个数进行平均分,求份数或每份数,乘法和除法是互逆关系,除法是乘法的逆运算。

  (2)陈述加、减、乘、除算式中各部分之间的关系。

  预设

  生1:一个加数+另一个加数=和,一个加数=和-另一个加数。

  生2:被减数-减数=差,被减数-差=减数,减数+差=被减数。

  生3:一个因数×另一个因数=积,积÷一个因数=另一个因数。

  生4:被除数÷除数=商,除数×商=被除数,被除数÷商=除数。

  生5:被除数=除数×商+余数。

《运算》教学设计2

  教学内容:整数乘法运算定律推广到分数乘法(教材第14页例5、例6,练习三的1、2、4、5题)

  教学目标:

  1、使学生会用整数乘法的运算定律推广运用到分数乘法,并使一些计算简便。

  2、培养学生灵活计算的能力,发展学生逻辑思维能力。

  重难点、关键:运用运算定律进行简便运算。

  教学过程:

  一、教学例5

  1、观察每组的两个算式,看看它们有什么关系。

  (1)○

  ① 学生计算,发现乘积一样,两个算式相等。

  ② 说一说存在的规律。

  ③ 用字母表示。

  板书:乘法交换律:ab=ba

  (2)()○()

  ①学生计算,发现乘积一样,两个算式相等。

  ②说一说存在的规律。

  ③用字母表示。

  板书:乘法结合律:(ab)c=a(bc)

  (3) (+)○+

  ①学生计算,发现乘积一样,两个算式相等。

  ②说一说存在的规律。

  ③用字母表示。

  板书:乘法分配律:(a+b)c=ac+bc

  2、小结。

  整数乘法的`运算定律对于分数乘法同样适用。

  师:应用这些乘法的运算定律,可以使一些计算简便。

  二、教学例6

  1、计算5

  (1) 观察算式,说一说你有什么想法。

  (2) 学生独立列式计算,教师巡视检查。

  (3) 汇报计算过程。

  5

  1 = 5 (问:运用了什么运算定律?)

  1 1 = 3

  2 =

  (4)想一想:不改写算式,直接进行约分行不行?

  抽生板演

  通过观察、思考、交流,使学生明白像这样连乘的算式,可以直接约分同时计算。

  (5)试一试

  3

  学生独立计算,请两位学生上台板演,完成后集体评价,发现问题及时纠正。

  2、计算(+)4

  (1) 观察算式,说一说你认为怎样计算比较简便。

  (2) 学生独立列式计算,请两位上台板演。

  (3) 集体评价,发现问题及时纠正。

  板书:(+)4

  21 =4+4

  5 1 =+1

  =1

  (4)试一试

  (+)27

  学生独立计算,教师巡视进行个别指导,发现问题及时纠正。完成后,请一位学生上台板演计算过程。

  3、计算:87

  (1)观察算式,说一说算式有什么特征?

  (2)你认为应该怎样算比较简便?

  (学生先独立思考,然后在小组中交流。

  (3)反馈交流结果

  板书:87

  =(86+1)

  1 =86 +

  1

  =3+

  =3

  三、巩固练习:完成练习三的1、2、4、5题

  四、课后作业设计:

  一、填一填

  1、□=□

  2、()=□(□□)

  3、(+)9=□9+□9

  二、用简便方法计算

  1、(+)24 2、21

  3、64、39

《运算》教学设计3

  教学内容:人民教育出版六年制小学数学课本第十二册,“数 的 意 义”(教材73—75页的内容)。

  知识目标:使学生进一步理解自然数、分数、小数、百分数的意义,进一步弄清概念间的联系与区别,能正确地解决一些与生活有关的数学问题。能力目标:培养学生团结协作的学习习惯和小组合作能力。 情感目标:联系生活中的数据扩展学生的知识面,培养学生多方面的情感。

  教学重点:使学生进一步理解自然数、整数、小数、分数的意义,能正确地解决一些与生活有关的数学问题。

  教学难点:弄清概念间的联系和区别.会应用所学知识解决生活中的数学问题。

  教学时间:1课时。

  教学准备:多媒体课件。

  教学流程:

  一、情境导入。

  师:同学们,数字王国的老朋友们来我们班级坐客了,你们还记得他们吗 ?师点击课件出示一群数字,提问:“在小学阶段,你们一共学了多少种数字?”引出自然数、分数、小数、百分数这几种数。引入课题,板书:“数的意义”

  二、快乐起飞。

  (一)轻松闯关。

  第一关:学生介绍自然数。

  1.学生介绍自然数、整数。(课件出示)

  2.指名用生活中的实例说明自然数的意义。

  3.教师小结。

  第二关:分数与小数。

  1. 分数、小数的意义。(课件演示)

  2.举例说名什么是真分数、假分数。(课件演示)

  3.同桌讨论:分数与除法的关系?

  学生汇报,教师小结。

  4.学生练习73页做一做。

  第三关:小数的分类。

  1.想一想小数可以分为几类?(课件出示)

  第四关:数位和位数。

  1.(出示课件)指名介绍数位、计数单位、十进制计数法。出示数位顺序表进行小结。

  2.位数。对于整数来说,含有几个数位的'数就是几位数,例如3是一位数,32是两位数,348070是六位数。

  对于小数来说,小数部分有几个数位就是几位小数,如3.17是两位小数,320.17也是两位小数。

  3.思考:位数和数位一样吗?(出示课件)

  4.说一说:4004.04这个数中的三个“4”分别在什么数位上,各表示什么。这个数中的三个“0”起什么作用?

  第五关:百分数的意义和成数(分数)。

  1.百分数的意义。

  2.成数。

  (二)经典回顾。(分组讨论)

  百分数和分数有什么联系和区别?

  1.小组讨论

  2.学生分组汇报。(课件演示)

  百分数和分数有什么联系和区别?

  (三)优化提高。

  用0.1、9这三个数字组成一个最大的三位数是( ),组成一个最小的三位数是( ),组成一个最小的小数是( ),组成一个最大的真分数是( )。

  三、开心畅行。

  课件出示本节课的相关练习每组回答两题,顺利完成者得☆。

  四、总结学习收获。

  五、板书设计:

  (第二课时)

  教学内容:人教版小学数学第十二册第四单元第二节“数的读写与改写”(教材75——77页)。

  教材分析:本节课主要是复习数的读写,以及对较大的整数改写成用“亿”或“万”作单位的数,求近似数,分数、小数和百分数的互化,对小学阶段有关知识进行概括和总结,加深学生的理解。

  教学目标:

  知识目标:1.使学生能比较熟练地读、写数。

  2.使学生进一步理解数的改写方法,能正确熟练地把一个较大的多位数改写以“万”或“亿”作单位的数和求近似数。 3.能正确熟练地进行分数改写以及分数、小数、百分数之间的互化。

  能力目标:进一步提高学生综合运用有关知识灵活解题的能力。

  情感目标:培养学生之间的合作意识,渗透转化的数学思想。

  教学重点:熟练地掌握数的读写和改写比较等基础知识。

  教学难点:小数、分数与百分数之间的互化。

  教 法:教师点拨引导,学生自主探究形成技能。

  学 法:分组讨论。

  教 具:多媒体课件

  课 时:一课时

  课 型:复习

  教学流程:

  一、激趣导入:

  课前我们先来进行一场小比赛,看看哪组能获胜。(课件2)

  你们也想像这组同学一样,读得又快又准吗?

  二、整理与复习:

  (一)数的读写:

  1.复习整数的读法

  (1)引导学生练习读数顺口溜。(课件3)

  (2)举例试读:30081754178读作

  25300004500读作

  2.复习整数的写数:(课件4)

  (1)学生在练习本上尝试。

  (2)订正答案,读顺口溜,记写法。

  3.复习小数和分数的读写。

  想一想:小数和分数应该怎样读,怎样写呢?

  (二)数的改写和求近似数:

  1.多位数的改写与求近似数。

  (1)出示:235800 950084000

  (2)出示问题(课件5)

  (3)学生分组讨论,全班交流。

  (4)学生汇报后师小结。(课件6)

  (5)反馈练习:完成76页“做一做”1题

  2.求小数的近似数。(课件7)

  4.62975 (保留一位小数)

  4.62975 (保留两位小数)

  4.62975 (保留三位小数)

  (1)小组讨论,全班交流:求小数的近似数要注意什么?

  (2)反馈练习:3.89967(保留三位小数)

  (三)假分数与带分数、整数的互化:(课件8)

  1.学生一边完成填空一边总结方法。

  2.强调:假分数什么条件下能化成整数?

  整数化假分数的条件和方法是什么?

  (四)分数、小数与百分数的互化(课件9)

  1.教师引导学生答题,并讨论改写方法。

  2.师生讨论:

  化小数? 12.5化分数?

  (五)拓展思维:怎样判断一个分数能不能化成有限小数?

  三、梳理与巩固:学生阅读教材75-77页,对知识进行梳理和巩固。请学生总结本节课知识点。教师板书。

  四、应用与提高:

  1.填一填:(课件10)

  2.选一选:(课件11)

  3.想一想:(课件12)

  五、拓展与延伸:

  课内作业:练习十五第2、4题

  课外作业:练习十五第3、5、6题

  板书设计:

《运算》教学设计4

  一、教学内容

  课本P57——58页

  二、教学目标:

  1.在回顾中复习混合运算的计算顺序。

  2.用列综合算式的方法解决问题。

  三、教学重点:对混合运算进行系统整理和复习。

  四、教学难点:对所学知识进行整理和复习。教学过程:

  五、教学基本流程:

  创设情境,展示目标———自主学习,合作交流——检查自学情况——教师精讲点拨——课堂巩固训练——课堂小结拓展、提升

  六、教学过程

  一、复习混合运算的顺序

  (一)整理混合运算的顺序;说出各题的运算顺序,再计算

  4×6÷8=

  72-5×8=;

  30÷6+29=

  7×(36-30)=

  48-18+32=

  (14+21)÷7=

  问题:读题目要求,想一想先算什么,再算什么?

  问题:1.你能把这6个算式分分类吗?并说说为什么?

  2.每一类按什么顺序进行计算呢?

  (1)在有加减乘除混合运算中,按先乘除后加减的顺;

  (2)只含有加减或乘。

  (一)整理混合运算的顺序

  说出各题的运算顺序,再计算。

  4×6÷8=72-5×8=

  30÷6+29=7×(36-30)=

  48-18+32=(14+21)÷7=

  问题:读题目要求,想一想先算什么,再算什么。

  问题:1.你能把这6个算式分分类吗?并说说为什么这么分类。

  2.每一类按什么顺序进行计算呢?

  (1)在有加减乘除混合运算中,按先乘除后加减的顺序计算。

  (2)只含有加减(或乘除),要从左至右按顺序计算。

  (3)有小括号的,先算小括号里面的。

  (二)对比练习,巩固混合运算的顺序

  比较上下两题的运算顺序和计算结果。

  18+27÷94×8-3

  (18+27)÷94×(8-3)

  问题:每组中上、下两题有什么相同点和不同点?

  小结:在做混合运算时,一定要想一想先算什么,再算什么。

  二、复习列综合算式解决问题

  问题:

  1.你知道了什么?

  2.你会解答吗?选择一个你喜欢的'问题把你的想法写出来。

  5.解答正确吗?

  4.能说说你们的想法吗?

  3.能列个综合算式表示你的思路吗?

  小男孩:

  3×4+5

  =12+5

  =17(元)

  小女孩:

  10-(3+5)

  =10-8

  =2(元)

  10-3-5

  =7-5

  =2(元)

  (26+19)÷5

  =45÷5

  =9(个)

  问题:

  1.你知道了什么?

  2.能列个综合算式表示你的思路吗?

  3.说一说你是怎么想的。

  4.为什么要加小括号呢?

  5.解答正确吗?

  8×3-10

  =24-10

  =14(瓶)

  问题:

  1.你知道了什么?

  2.要求“还剩多少瓶”,你们会解决吗?能列综合算式表示你的思路吗?

  3.说一说你的想法。

  4.这道题需要加小括号吗?

  5.解答正确吗?

  三、课堂作业

  作业:第58页练习十三,第1~3题。

  四、课堂小结拓展、提升

  学了这节课你有什么想法和收获?

《运算》教学设计5

  一、学习目标

  (一)学习内容

  《义务教育教科书数学》(人教版)四年级下册第6页例3。

  在前面的学习中,关于0在四则运算中的特殊性学生已经积累了比较丰富的感性经验,本节课在举例、讨论中把感性经验上升为理性认识。例3明确提出了“问题”,通过小组讨论让学生回忆、整理和概括,把关于0的运算知识系统化。

  (二)核心能力

  通过本节课的学习,在分类讨论中培养学生的归纳能力和语言表达能力,促进运算能力和推理能力的发展。

  (三)学习目标

  1.借助具体算式,通过分类、整理,概括出0在四则运算中的特性,会利用0的特性正确计算。

  2.通过交流讨论,结合例子说明0不能作除数,理解0为什么不能作除数的道理,进一步掌握0在四则运算中的特性。

  (四)学习重点

  0在四则运算中的特性。

  (五)学习难点

  理解0为什么不能作除数。

  二、学习设计

  (一)课前设计

  1.预习任务

  关于0的运算有哪些?举例子写一写。

  (二)课堂设计

  1.复习旧知

  (1)课前大家写了一些关于0的.运算,谁来说一说你写的有哪些?

  学生汇报。

  (2)我也收集了一些关于0的运算,你能快速、正确的计算吗?

  120+0=0+368= 0×79= 267-0=

  0÷74= 187-187= 0÷76= 235+0=

  99-0= 49-49= 0+879= 45×0=【设计意图:本环节通过汇报自己所收集的有关0的运算引入本节课的教学,有利于唤醒旧知,激发学生的学习兴趣。同时,通过有关0的口算练习,为概括0在四则运算中的特性和进一步掌握有关0的运算作铺垫。】2.问题探究

  (1)小组合作,分类整理关于0的运算的特性。

  ①小组活动要求:

  请将上面的口算进行分类;

  观察这些运算的特点,试着用自己的语言描述这些运算;

  在小组内合理分工,做好汇报准备。

  ②汇报交流。

  组织学生汇报,在汇报中注重生生间的交流,进行及时补充。

  ③概括总结通过大家的讨论和交流,我们发现了关于0的运算有这些:一个数加上0,还得原数;一个数减去0,还得原数;被减数和减数相等,差是0;一个数和0相乘,仍得0;0除以任何数,还得0。(注意:在总结时举例验证。)

  (2)探究0不能为除数

  ①关于0的运算你还有什么想问或想说的吗?

  若学生想不到,可以通过观察0在不同运算中的位置,引导学生说出0是否可以作除数。

  ②小组讨论:0能否作除数?如果用0作除数会怎样?

  先组织学生小组讨论,教师引导,使学生明确0不能作除数。

  ③教师总结:0不能为除数,如5÷0不可能得到商,因为找不到一个数同0相乘得5;0÷0不能得到一个确定的商,因为任何数同0相乘都得0。这时,教师相机板书“非0的”。【设计意图求:通过分类,使学生归纳出有关0的运算的不同规律;通过举例说明,使学生在讨论、交流中明白0为什么不能作除数的道理。在分类、举例说明中使学生的认知结构更加稳定和完善。】3.巩固应用 提升能力

  (1)抢答。

  24+0= 13-13= 0×8= 0÷9=

  70-0= 0+504= 0÷36= 392×0=

  (2)判断。

  ① 0和任何数相乘都得0。 ( )

  ② 0除以任何数都得0。 ( )

  ③ 一个数加上0仍得0。 ( )

  ④ 130×0=130-0 。 ( )

  (3)同桌之间互相写出关于0的算式,写在练习本上,交换完成后相互检查。

  (4)先说说运算顺序再计算。

  58÷2×0 0÷14+63÷7

  24÷(75-67) 9+9×9-9【设计意图:围绕学习内容设计不同形式的练习,目的是帮助学生巩固知识,形成技能。同时注意培养学生应用知识的灵活性和创造性,正确对待学生暴露出的问题和疏漏,加强点拨指导,引导学生诊断矫正。同时,最后一题也为下节课四则混合运算顺序的学习做铺垫。】4.全课小结 今天你有什么收获?总结:这节课我们梳理总结了关于0的运算的特性。一个数加上0,还得原数;一个数减去0,还得原数;被减数和减数相等,差是0;一个数和0相乘,仍得0;0除以一个非0的数,还得0。

  (三)课时作业

  题号1:算一算.

  0+31= 18-18= 68-0= 23×0=

  72+0= 78×0= 78×1= 0÷56=

  1+2+3+4+5+6+7+8+9+0=

  1×2×3×4×5×6×7×8×9×0=

  题号2:脱式计算。

  34+4-34+4 430×0÷45 28+(69-69)÷7

  125×8÷125×8 (100-25×4)×36

《运算》教学设计6

  教学内容: 教科书第35-36页

  教学目标:

  1、让学生联系解决生活实际问题的过程感悟、理解并掌握不含括号的三步混合运算的运算顺序,能正确地进行计算,并能用以解决三步计算的实际问题。

  2、让学生在学习活动中增强类比迁移能力和抽象概括能力,获得成功体验,感受学习数学的乐趣。

  教学重点、难点:

  重点:理解三步计算运算顺序。

  难点:运用三步计算解决实际问题。

  教学准备:

  教学光盘

  板书设计:不含括号的混合运算

  12×3+15×412×3+15×4

  =36+15×4=36+60

  =36+60 =96(元)

  =96(元)

  答:一共要付96元。

  教学反思:

  一得:

  一失:

  一联系:

  教学过程:

  一、基础练习:

  37+26=76-39=605+59= 30×23=

  12×8= 27+32=48+27=4500×20=

  二、新授:

  1、很多同学都喜欢下棋,我们一起去看看王老师买棋时遇到了什么数学问题:

  演示例题,指名说说图上的信息:

  买3副中国象棋和4副围棋。象棋的.单价是12元,围棋的单价是15元

  读问题:她一共要付多少元?

  这是一道购物的实际问题,遇到这类问题你马上会想到哪个基本数量关系式?

  复习:单价×数量=总价

  2、学生尝试列式,并交流:

  (1)分步列式:12×3=36元15×4=60元36+60=96元

  (2)综合:12×3+15×4

  讲评:指着分步列式,让学生明确每一步算式的意思。

  比较两个综合算式,让学生说说下面的算式为什么是错的?它这样算出的结果表示什么?

  明确:要用象棋的单价乘象棋的数量等于象棋的总价,围棋的单价乘围棋的数量等于围棋的总价;分别算出两样棋的总价加起来就是一共要付的钱。

  3、运算顺序:

  12×3+15×412×3+15×4

  =36+15×4=36+60

  =36+60=96(元)

  =96(元)

  比较这两种运算顺序,它们都对吗?哪个更好?为什么?

  指出:这是一个三步混合运算,有乘有加,先算乘,即分别先算象棋和围棋的钱。

  4、学生完成试一试:150+120÷6×5

  做完后交流,可能会有个别学生先算乘,如果有可请学生说说正确的运算顺序,乘除在一起的时候,谁在前谁先算。

  5、结合两题引导学生总结:在没有括号的算式里,有乘、除法和加、减法,要先算乘、除法。

  三、巩固练习:

  1、学生独立做在自备本上:

  80÷2+76÷4240÷6-2×1745-20×3÷451-36÷3+25

  指名板演再结合具体问题交流。

  2、下面的运算对吗?把不对的改正过来。(题略)

  建议:做混合运算,要先观察该题的运算符号,可把先算的步骤划线表示,然后再算。

  3、比一比,你能说出原因吗?

  25×30+25×20840÷40-400÷40

  25×(30+20)(840-400)÷40

  第一组题可引导学生结合乘法意义来说,或是结合具体问题来举例说明。

  四、解决实际问题:

  1、(第4题)读题后让学生解释“人均居住面积”的含义和求法,并列出综合算式。

  2、(第5题)分析“我们组比你们两组的总人数多6人”,指名说说“你们两组的总人数”怎么算?

  3、(第6题)比较两小题,说说两题的联系。

  4、把这3道联系实际问题做在作业本上。

  五、总结:

  通过学习,你有什么收获?

  思维拓展:

  4. 把下面三组用字母表示的算式分别列成综合算式。

  ⑴ a × b = c ⑵ x ÷ y = a⑶ y × b = x

  X – y = ax × y = b a ÷ b = c

  X + y= b b – a = ca +y = x

《运算》教学设计7

  设计理念:

  本课设计努力为学生创设一种宽松的学习氛围,通过故事情境的创设化解生活中普遍存在的:在解决实际问题时,被减数“1”往往内隐在数量关系之中这个难点问题。在进行异分母分数加减混合运算时,大胆放手让学生去尝试探索,学生自己去总结、整理,有利于学生掌握知识与技能,解决问题的过程与方法。为下一节课分数加减运算及简便计算的探索留下空间。从而逐步提高学生基本的计算能力和综合运用简算知识以及技能的能力。另外,在解决稍复杂的分数加减实际问题中,让学生尝试运用不同解法,使他们体验到解决问题策略的多样性和灵活性,发展实践能力与创新精神。

  教学目标:

  1、学生联系具体的问题情境,理解并掌握分数加减混合运算的运算顺序,能正确进行分数加减混合运算。

  2、学生学会分析把总数看作“1”,求剩余部分占总数的几分之几之类的实际问题的数量关系,会运用分数加减混合运算解决一些简单的实际问题,进一步提高解决实际问题的能力,发展数学应用意识。

  3、学生在分析数量关系和探索计算方法的过程中发展数学思考。

  4、学生在学习活动中,进一步感受数学学习的挑战性,体验成功学习的乐趣,增强学好数学的信心。

  教学重点:

  分析求剩余部分占总量的'几分之几的实际问题的数量关系,关键是需要把被减数看作“1”。

  教学难点:

  能正确计算分数加减混合运算。

  教学准备:

  1、将本课故事题目、顺口溜、结语等内容制成课件。

  2、用多媒体课件或小黑板出示“练习与应用”的第1—4题

  教学流程:

  一、故事导入

  师:唐僧师徒一行到西天取经,路途遥远而艰辛,由于奔波劳累,大家口干舌燥,实在走不动了,师傅叫八戒去找些东西解渴,懒洋洋的八戒不去化斋,便从老农的瓜地里偷了一个西瓜,当师傅问他西瓜从何而来时,八戒吞吞吐吐的答不上来,这时师傅已经猜到八戒的西瓜八成是偷来的,因而十分生气,坚决不吃,并将八戒教训了一顿。悟空赶忙从八戒手里抢过西瓜说:“师傅不吃,我们3人就分了吧,每人吃1/2。”八戒一听急了,马上说:“不行,不行!西瓜是我拿回来的,我不能只吃1/2,没有1/4,也要1/5悟空就切了1/5给八戒。再切1/3给沙和尚,剩下的归自己,八戒一看直拍脑门大喊:“猴哥,我上当了!”亲爱的同学们你们知道八戒为什么喊上当了?

  出示题目:有1块西瓜,沙师弟吃其中的1/3,八戒要吃其中的1/5,剩下的给悟空吃,悟空吃了这块西瓜的几分之几?

  学生读题,猜想:悟空吃剩下的西瓜,怎样求剩下的几分之几?

  设计意图:数学来源于生活又应用于生活。每个孩子都喜欢听故事,我通过讲故事,让学生明确生活中处处有数学。这样导入新课,能把枯燥的知识趣味化、生活化,感受数学知识和方法的应用价值,还能把学生的情感态度提升到一个新的境界。

  二、探究新知

  1、出示题目,理解题意。

  红山小学校园里有一个花园,其中月季花的面积占1/4,杜鹃花的面积占1/3,其余是草坪。草坪的面积占几分之几?

  师:花园里除了月季花和杜鹃花剩下的就是草坪了,你能说出如何求草坪的方法吗?

  课件出示学生可能说出的方法:

  花园面积-月季花面积=草坪面积

  花园面积-(月季花面积+杜鹃花面积)=草坪面积

  师:谁能解释“月季花的面积占1/4,杜鹃花的面积占1/3”,这两句话的含义?

  引导学生说出:根据分数的意义,把花园的面积看作“1”。

  2、根据题意,列出算式,并说算式意义。

  师:现在花园的面积用“1”表示,月季花的面积用1/4表示,杜鹃花的面积用1/3表示,那么剩下的草坪面积该怎样列式计算呢?

  学生尝试列出算式:

  1-1/4-1/3 1-(1/4+1/3)

  师:你们真是好样的!那么老师前面刚给同学们讲的故事:1块西瓜,沙师弟吃其中的1/3,八戒要吃其中的1/5,剩下的给悟空吃,悟空吃了这块西瓜的几分之几?

  可以怎样列式解答呢?学生可以列出以下算式:

  1-1/3-1/5 1-(1/3+1/5)

  师:这4个算式与前两节课学习的分数加减计算有什么不同?(前两节课学习的是加法或减法的一步计算,这4个算式有的是连减,有的是加减混合计算。)

  师:这节课我们学习的就是分数加减混合运算。(板书课题)

  师:我想大家对加减混合运算应该不会陌生,有信心独立完成吗?

  3、两组同学在书上独立完成1-1/4-1/3 和1-(1/4+1/3) 两个算式的计算,另两组在练习本上计算

  1-1/3-1/5 1-(1/3+1/5)

  指名4位同学上台板演。

  再交流计算方法与结果。

  明确:分数加减混合运算的运算顺序是和整数加减混合运算的运算顺序一样的。

  设计意图:这节课的教学难点是分析例题中的数量关系,列出算式,难在被减数是个隐蔽的已知条件,要看作“1”,我在这个关键之处,以西天取经的有趣数学故事中蕴含的数量关系作铺垫,再引导学生探究例题呈现的条件,抓住题中分数所表示的意义这个关键,很自然地找到了隐蔽条件所应取的数值,这样化难为易,如何列式计算,不仅知其然,而且知其所以然。

  三、巩固

  1、练一练

  (1)计算下面各题. 5/9+2/3-2/5 1-(1/2+1/6

  (2)我国约有7/10的人口在农村,其余的在城市。城市人口大约占全国人口的几分之几?

  独立完成,校对交流,明确算式的意义。

  2、练习十五第1题

  3/4-5/8+5/6 4/5-(1/6+3/10) 3/7-(9/11-1/2)

  (1)学生独立计算,三人板演。

  (2)校对交流,特别要注意比较各种方法的优劣。

  (3)教师与学生根据具体情况一起小结:分数加减混合运算的运算顺序与整数相同,参加运算的几个分数,可以分步通分,分步计算;也可以一次通分,再计算。中间过程中的分数,如果先约分再参加运算比较简便,就及时约分。怎样算简便就怎样算。

  3、练习十五第3题

  理解题意后,解答前面两个问题。

  鼓励学生根据题中已知条件提出用分数加减法计算的不同问题,可以是一步也可以是两步计算的,并让学生尝试解决提出的一些问题。

  4、练习十五第2、4题 学生独立完成后交流校对。

  教师课堂巡视,选择典型错误分析原因。

  师:在分数加减混合运算时要注意什么?

  教师根据学生的回答小结,提醒学生用好分数加减混合运算“四部曲” 。

  课件出示:

  分数加减混合运算“四部曲”

  ①认真审题是前提

  ②仔细思考是基础

  ③细心计算是关键

  ④自觉检验是保证

  设计意图:将运算顺序编成简单易记的顺口溜,有助于学生掌握分数加减混合运算的运算顺序,从而正确进行分数加减混合运算。在学生计算过程中,抓住典型错例展示点评,并用分数加减合运算“四部曲”小结,有利于学生避免错误,提高学生的计算能力。

  四、总结

  这节课学习的是什么内容?你能把计算分数加减混合运算的经验和体会说给其他同学听听吗?

  板书设计: 分数加减混合运算

  把花园的面积看作“1”

  1-1/4-1/3 1-(1/4+1/3)

  把一个西瓜看作“1”

  1-1/3-1/5 1-(1/3+1/5)

  把全国人口数看作“1”

  1-7/10

《运算》教学设计8

  教学内容:

  第一课时 混和运算

  例1、练一练

  教学目标:

  1.知识与技能:结合实际生活中的具体情景,使学生初步掌握在两级混合运算中“先算乘除法后算加减法”、“先做小括号里面的”运算顺序,并能正确地进行计算。

  2.过程和方法:结合生活情景,使学生初步学会解答数量关系比较简单的用两步解答的实际应用题,能正确分析数量关系,并会分步列式解答。

  3.情感、态度和价值观:培养学生认真观察、独立思考、细心计算的良好学习习惯,初步培养学生在实际生活中发现问题、提出问题、解决问题的能力和用数学的意识。

  教学重点:

  先算乘除法后算加减法的运算顺序

  教学难点:

  运算顺序

  教学用具:

  课件

  教学过程:

  一、复习

  3×8+44×3+24×9+6

  说说你是怎样算的?(从左到右计算)

  二、新授:

  1.出示过渡:在商场柜台里有许多商品。我们快看看货架商都有哪些食品和饮料它们的售价各是多少元?

  出示课件:饼干7元/包,面包4元/个,蛋糕6元/个;牛奶2元/盒,可乐2元/筒。

  (1)学生读出各种商品的价钱

  (2)问题:你想购买什么食品?你能提出什么数学问题?

  (3)生小组讨论,全班交流。

  2.观察图中小朋友说的话,让我们一起来帮助她解决这个问题好吗?

  (1)学生审题,独立思考,用自己喜欢的方法解决。

  (2)生小组讨论,全班交流。说一说你是怎样想的.?

  ①2×3=6(元)6+7=13(元)——分步式

  ②2×3+7=13(元)

  ③7+2×3=13(元) ———综合式

  (3)观察这三个算式的运算顺序....(先算什么,再算什么),有什么共同之处?为什么? (分步式和综合式都是先算乘,再算加。)

  (4)观察两个综合算式的运算顺序.... ,先算什么,再算什么? (在一个综合式中,不管乘在前还是在后,都是现算乘,再算加。)

  三、试一试。

  1.说说先算什么,后算什么?再独立完成。

  38-6×35×9-40

  2.观察两部试题,想一想先算什么,后算什么?再独立完成。

  54÷9-420+48÷6

  3.小结:

  计算中,加减法是同一级运算,乘除法是同一级运算,同级综合算式中我们都是按照从左到右的顺序计算,也就是说当算式里有加减法时,我们按照从左到右的顺序计算,当算式里有乘除法时,我们也按照从左到右的顺序计算。观察上面四个加减乘除混合的综合试题,你发现在计算既有加或减,又有乘或除时该按照什么顺序计算吗? (在算式里,有加法或减法,又有乘法或除法,不管谁在算式的前面,都要现算乘法或除法,再算加法或减法。)

  4.同桌互说发现的规律。

  四、练一练

  说说先算什么,再计算(先算的一级画思维线)。

  6×4+872÷8-418-45÷535-3×720+63÷98×3-5

  五、小结

  今天这节课你有什么收获? 今天我们学到的这个有关混合运算的计算顺序规律可总结成“先乘除,后加减” 作业:做练习册相关内容

《运算》教学设计9

  教学内容:苏教版小学数学四年级上册56~58页

  教学目标:

  1、使学生经历观察、猜想、验证、结论的探索加法运算律的过程,理解并掌握加法的交换律和结合律,并初步感知加法运算律的价值,发展应用意识。

  2、使学生在学习用符号、字母表示自己发现的运算律的过程中,初步发展符号感,初步培养归纳、推理的能力,逐步提高抽象思维的水平。

  3、使学生在数学活动中获得成功的体验,进一步增强对数学学习的兴趣和信心,初步形成探究问题的意识和习惯。

  教学重点:

  用观察、猜想、验证的方法探索加法交换律和结合律,能正确地用字母来表示。

  教学难点: 用语言表述加法结合律和加法交换律。

  教学准备:多媒体课件

  教学过程:

  一、开门见山,直入主题。

  1、同学们,喜欢体育活动吗?都喜欢哪些体育活动呀?

  2、经常体育活动可以强身健体,这些小朋友也在开展活动,看,从图中你获得了那些数学信息?

  3、根据这些信息,你能提出用加法计算的问题吗?

  二、教学例题,验证规律。

  1、根据学生的问题,随机选择主要的两个来研究。

  (1)跳绳的有多少人 ?(2)参加活动的'一共有多少人?

  2、师生研究第一个问题,得出加法交换律。

  (1)学生读题,弄清题意。

  (2)学生说算式和结果,教师出示28+17=45 人和17+28=45人

  (3)请观察这两道算式,它们都是求什么?结果相同吗?我们可以用“=”把它们连起来

  (4)教师板书:28+17=17+28)

  (5)学生读算式并观察思考。得出加法交换律 :两个数相加,交换了位置,和不变。

  3、抛出问题,得出猜想。

  (1)教师问:是不是任意两个加数,交换了位置,和都不变呢?

  (2)小结: 看来经过一个算式得到的结论,只能是一个猜想,要验证这个猜想,就要举更多的例子。

  4、验证猜想,体会方法。

  (1)同桌两人合作,选好两个数,比如一人算6+8, 另一人算8+6,比比结果,如果相同就可以写出一个等式,坐在左边的同学负责记下这个等式。

  (2) 学生汇报,教师板书。

  教师小结: 照这样下去,能写完吗 ?加省略号。这些例子都在说明“交换两个加数的位置,和不变”是正确的。

  (3) 学生找一找,交换加数的位置,和变的例子。

  教师通过互联网,求助结果,进一步证明加法交换律的正确性。

  5、得出结论,字母表示。

  (1)学生读结论。(2)学生用自己喜欢的方式表示所有的算式。(3)归纳小结,指出加法交换律。

  6、 及时巩固,联系旧知。

  三、运用方法,继续探究。

  1、出现第二个问题:“参加活动的一共有多少人?”

  学生读题。在本子上用综合算式解答。

  2、交流想法,得出算式。

  (28+17)+23 28+(17+23) )

  师生交流:这两道算式都是求什么?他们的得数相同。我们也可以用等号把它们连起来。

  教师板书:(28+17)+23 = 28+(17+23)

  3、 学生做书上的题目,继续认识这样的等式。

  4、根据等式,提出猜想。

  5、学生验证猜想,教师随机点拨。

  (1) 出示友情提示:1、同桌合作,想好三个数,按顺序计算和先算后两个数,看有什么发现?。2、 在小组里说一说你们的验证过程。

  (2)学生汇报,板演等式。

  (3)小结结果,得出结论。

  6、用字母表示加法结合律

  板书:(a+b)+c=a+(b+c)

  7、联系交换律,比较两个定律的相同点和不同点。

  四、分层练习,巩固新知。

  1、完成“想想做做”第1题。其中最后一题,要提醒学生注意:它先是运用了加法交换律,又运用了加法结合律。

  2、第二题。

  学生在课本上独立完成,再想想为什么这样填?

  生口答,师演示过程。

  3、第4题,从每组题目中选择你喜欢的一题做一做。

  学生汇报,教师引导。

  五、总结全课:同学们交流收获。

《运算》教学设计10

  教学目标

  1.掌握两位数加减混合运算的竖式书写方法,能够运用所学的100以内的减法知识,解决生活中的一些简单的实际问题。

  2.培养学生自学能力和尝试精神。

  3.通过创设生活化的情境,使学生感受到数学与生活的密切联系。培养学生的数学情感和团结协作的好品质。

  教学重点难点:

  正确计算加减混合运算。

  教学准备:

  自制多媒体课件

  教学过程

  一 复习导入(多媒体展示)

  填空

  1、笔算加减法时﹐相同数位要( ) ,先从个位加减。

  2﹑个位相加满十向十位进( ) 。如果个位不够减,就从十位退( ) 。 竖式计算

  46+25+17 75-28-19

  二 探究体验

  1 课件出示公共汽车停在站点情景图。(有乘客上车,有乘客下车)

  2引导学生仔细观察,说说你知道了什么?你还想知道什么?(根据学生回答师出示有关数据)

  3 引导学生根据看到的.情景,提出有关的数学问题。

  4 引导学生列出加减混合运算式

  思考:要想知道现在车上有多少人,该怎样列式? 生说师板书:67-25+28 67+28-25 5请学生说说列式的理由。(让学生弄清楚要求车上现在有多少人就是要从原来车上的67人去掉下车的25人,还要把上车的28人加上)揭示本节课题“加减混合运算”

  4 引导学生探究加减混合算式的竖式计算方法。(借助前面学过的连加 连减计算方法,类推出算是67-25+28的竖式写法。(同桌交流,师巡视指导点拨)

  5 组织全班交流计算方法(方法让学生自己选择喜欢哪一种就用哪一种)师指导竖式计算。

  6 小结:这节课我们学会了什么?以后遇到这样的问题我们能用我们所学的数学知识来解决吗?

  三 实践应用

  1、组织学生完成第28页“做一做”

  56+34-20 78-24+39 (生独立完成,集体订正)

  2、小动物做对了吗? 80-46+18=62 54+26-48= 22

  3、二(2)班共39人,下课了,走出教室15人,又进来7人,现在教室里有多少人?

  4、夺红旗游戏(分小组每个成员依次按顺序计算出结果,看哪个小组完成的又对又快)

  5、我家养了15只鸡,上个月下了43个蛋,吃了28个,这个月又下了39个蛋,请问我家现在有多少个鸡蛋?

  四、总结:这节课你学会了什么?加减混合应注意什么? 《乘法》乘减、加减两步计算的实际问题

《运算》教学设计11

  学习目标:

  (一)知识与技能目标

  使学生理解并掌握分式的乘除法则,运用法则进行运算,能解决一些与分式有关的实际问题.

  (二)过程与方法目标

  经历探索分式的乘除运算法则的过程,并能结合具体情境说明其合理性

  (三)情感与价值目标

  渗透类比转化的思想,让学生在学知识的同时学到方法,受到思维训练.

  学习重点:掌握分式的乘除运算。

  学习难点:分子、分母为多项式的分式乘除法运算。

  教学过程

  一、情境引入:

  你还记得分数的乘除法法则吗?你能用类似于分数的乘除法法则计算下面两题吗?

  (1) = (2) =

  二、探究学习:

  (1)你能说出前面两道题的计算结果吗?

  (2)你能验证分式乘.除运算法则是合理的.正确的吗?

  (3)类比分数的乘除法则,你能从计算中总结出怎样进行分式的乘除法运算吗?

  归纳小结:

  (1)分式的乘法法则:分式乘以分式,用分子的积做积的分子,分母的积做积的分母。 即: ab ×cd =acbd 。

  (2)分式的'除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。 即:ab ÷cd =ab ×dc =adbc 。

  (3)分式的乘方法则:分式乘方是把分子、分母各自乘方。即:( ab )n=anbn

  三、典型例题:

  例1、计算:1. . 2。( )

  例2、计算、1. 2.

  归纳小结:分式的乘法运算,先把分子、分母分别相乘,然后再进行约分;进行分式除法运算,需转化为乘法运算;根据乘法法则,应先把分子、分母分别相乘,化成一个分式后再进行约分,但在实际演算时,这样做显得较繁琐,因此,可根据情况先约分,再相乘,这样做有时简单易行,又不易出错.

  四、反馈练习:

  (1) (2) .

  (3) (a-4). (4)

  五、探究交流: (1)在夏季你是怎么挑选西瓜的呢?

  (2)你认为买大西瓜合算还是买小西瓜合算?

  七、课堂小结:

  1、分式的分子、分母都是几个因式的积的形式,约去分子、分母中相同因式的最低次幂,注意系数也要约分。

  2、当分式的分子、分母为多项式时,先要进行因式分解,才能够依据分式的基本性质进行约分。

  【课后作业】

  班级 姓名 学号

  1、 填空

  (1) (2)

  (3) (4)

  (5) = (6)

  (7)若代数式 有意义,则x的取值范围是__________.

  2、选择

  (1)下列各式计算正确的是 ( )

  A. ; B.

  C. ; D.

  (2)下列各式的计算过程及结果都正确的是 ( )

  A.

  B.

  C.

  D.

  (3)当 , 时,代数式 的值为( )

  A.49 B.-49 C.3954 D.-3954

  (4)计算 与 的结果 ( )

  A.相等 B.互为倒数 C.互为相反数 D.以上都不对

  (5)若x等于它的倒数,则 的值是 ( )

  A.-3 B.-2 C.-1 D.0

  3、计算

  (1) (2)

  4、中考链接(选作题)

  已知aba+b =13 ,bcb+c =14 ,aca+c =15 ,求代数式abcab+bc+ac 的值。

《运算》教学设计12

  教学内容:

  北师大版小学数学六年级下册第五单元第60、61页的内容。

  教学目标:

  1.知识目标:利用方程解决与分数运算有关的实际问题,会画图分析数量关系,会利用图找出等量关系,并根据等量关系列出方程。

  2.能力目标:结合具体情境,发展学生的估算意识和能力。

  3.情感目标:培养学生的节约意识,提高学生学习兴趣,培养主动解决实际问题的意识。

  教学重点:利用方程解决与分数运算有关的实际问题。

  教学难点:发展估算意识,能画图分析数量关系,会利用图找出等量关系。

  教学准备:小黑板(多媒体课件)

  教学过程:

  一、创设情境,引入新课

  师:同学们,你们知道世界水日吗?为什么要设立这样一个节日?(3月22日)水是我们人类赖以生存的最宝贵的资源,如果我们都不珍惜水资源,那么地球上的最后一滴水将是我们人类的眼泪。所以,我们要节约用水,从我做起,从身边的小事做起。这节课我们就一起来研究节约用水中的数学问题。

  板书课题:分数的混合运算(三)

  我们来看一下小刚家的用水情况。

  (出示)小刚家八月份用水14吨,九月份比八月份节约了1/7,九月份用水多少吨?

  二、数量分析 ,探究新知

  师:如果条件和问题交换一下位置,你能知道八月份的用水量吗?

  (出示例题)小刚家九月份用水12吨,比八月份节约了1/7,八月份用水多少吨?

  1、估一估

  师:我们先来估一估,哪个月份用水少?哪个月份用水多?(让学生说出估算的根据)

  2、画一画(画图分析数量关系)

  (1)师:刚才已经初步估计了一下八月份的用水量,到底估计的是否正确呢?分析之后才能判断。引导学生思考:“比八月份节约了1/7”是什么意思?

  师:你能用图来分析题目中的数量关系吗?让学生在练习本上尝试着画线段图。

  (2)全班交流。

  引导学生想一想:为什么先画八月份的用水量?明确是九月份和八月份在比较,把八月份的用水量看做单位“1”,九月份比八月份节约了1/7,即把八月份的用水量平均分成7份,其中的一份就是九月份比八月份节约的水。

  引导学生注意:九月份比八月份少的那段要用虚线表示,在线段图中标出已知数量,用“?”标出要求的数量。

  3、写一写(利用图找出等量关系)

  八月份的用水量×(1-1/7)=九月份的用水量

  八月份的用水量—节约的吨数=九月份的用水量

  三、例题讲解

  1、让学生尝试着选择上面的等量关系列出方程解答,找两名学生板演。

  方法一解:设八月份用水x吨

  (1-1/7)x=12

  6/7x=12

  x=14

  答:八月份用水14吨。

  方法二解:设八月份用水x吨

  x-1/7x=12

  6/7x=12

  x=14

  答:八月份用水14吨。

  2、查一查

  生自由检验,指名说说检验的方法,然后检验上课时估算的结果是否正确。

  强调:在解决实际问题时,一定要对结果进行检验和解释。

  四、自主练习

  师:同学们表现的都很积极,通过自己的努力解决了问题,现在老师把题目稍微改一下,你们有办法解决吗?把题目中的“比上月节约了1/7”改为“比上月多用了1/7”,问题不变。

  先让学生估计一下哪个月的用水量少,再画一画线段图表示题中的数量关系然后再计算。完成后在小组里交流一下,然后检验。

  五、拓展应用,解决问题

  1、60页2、3题

  引导学生画图来分析题目中的数量关系,在此基础上找到基本的等量关系,从而利用方程进行解答。

  2、数学万花筒

  师:我国古代有很多著名的数学家,程大位就是其中一位。(多媒体显示程大位图像)他的主要著作之一《算法统宗》中有许多数学问题都是以歌词的'形式呈现的,“以碗知僧”就是其中一首。

  巍巍古寺在山中,不知寺内几多僧,三百六十四只碗,恰合用尽不差争,三人共食一碗饭,四人共尝一碗羹,请问先生能算者,都来寺内几多僧?

  让学生读一读这首诗,要求学生用数学语言重新描述这个问题,在学生回答的基础上,利用多媒体展示,让学生更加明确:山上有一座古寺叫都来寺,在这座寺庙里,三个和尚合吃一碗饭,4个和尚合分一碗汤,一共用了364只碗,请问都来寺里有多少个和尚?

  这道题具有很强的趣味性,对学生很有吸引力,而且能使学生感受祖国古代数学文化的深厚底蕴,让学生产生民族自豪感,并被我们的祖先的智慧所折服,增加对数学的兴趣。

  六、课堂反馈

  1、练一练第4题。

  2、新兴养猪场今年养猪2400头,比去年增加1/5,去年养猪多少头?

  3、小明家六月份用水14吨,比五月份多了1/6,五月份用水多少吨?

  七、课堂小结。

  师:通过自己的积极探索,这节课你有什么收获?学生交流自己的收获。希望同学们在学习数学的过程中,不断的获取,不断的攀登,收获更大的快乐,享受更多的喜悦!

  八、家庭作业

  1、练一练第1题。

  2、完成配套练习相关内容

  九、板书设计:

  分数混合运算(三)

  小刚家九月份用水12吨,比八月份节约了1/7,八月份用水多少吨?

  ?吨

  八月份

  九月份

  12吨 比八月份节约了1/7

  解:设八月份用水x吨 解:设八月份用水x吨

  (1-1/7)x=12 x-1/7x=12

  6/7x=12 6/7x=12

  x=14 x=14

  答:八月份用水14吨。 答:八月份用水14吨。

  十、教学反思:

  解:设原来有X堆旗子,每堆有Y颗。

  所以,原来共有 36%XY 颗白子

  当取走 1/2Y 颗 黑子后,40% (XY--1/2Y)颗白子

  所以,36%XY =40% (XY--1/2Y)

  4% XY=20%Y

  0.04XY=O.2Y

  004X=0.2

  0.4X=2 X=5

  答,原来有5堆棋子。

《运算》教学设计13

  一、旧知引学

  1.谈话:我们目前学习过哪几种运算?

  2.我们学过的加、减、乘、除四种运算统称四则运算。

  3.说一说下面各题的运算顺序:96-16+20 、96÷12×4 同级运算:从左往右计算。

  加减法称为第一级运算,乘除法称为第二级运算。

  96÷12+4×2 含两级运算:先乘除后加减。

  4.通过刚刚的练习,我们已经总结了没有小括号的四则混合运算的顺序。下面我们来继续学习含有括号的混合运算的顺序。(板书课题:有括号的混合运算)

  5.请同学们看这个算式:(板书:96÷12+4×2) 说一说算式的运算顺序。

  6.老师在这道题的基础上加上小括号,变成96÷(12+4)×2, (板书: 96÷(1+4)×2 ),再给这个算式加上中括号,变成96÷【(12+4)×2】,(板书96÷【(12+4)×2】)运算顺序怎样呢?下面我们来自主学习含有小括号和中括号的例4。

  二、研学提示(自学例4)

  1.画一画:红笔画出关键知识点,标清疑问。

  2.想一想:有小括号的混合运算顺序怎样。

  3.议一议:既有小括号,又有中括号的混合运算,顺序怎样?

  4.算一算:完成学习单上的例4。

  三、汇报展学(学生板演)

  1. 96÷(12+4)×2 :计算顺序怎样?有小括号的算式怎样计算?

  2. 96÷【(12+4)×2】 :认识【】,读法,写法,算式读法。

  计算顺序怎样?有中括号的`算式怎样计算?

  与96÷(12+4)×2比较,数相同,运算符号相同,计算顺序不同,计算结果不同。

  3. 小括号和中括号在一个算式中,有什么作用呢?(板书:改变运算顺序)

  四、练学:接下来,我们运用新知识,巩固练习。

  1. P9——做一做

  先说顺序,再计算,学习单汇报。

  2. 你知道吗?

  猜一猜:一个算式里,有大括号、中括号、小括号,计算顺序是什么?

  3.P11——3

  先分别说一说每组算式的计算顺序,再计算每组最后一道题。

  学习单汇报。

  4.P11——2

  书中完成,展台汇报。

  (1)注意320要写在算式最前面,中括号的正确用法。

  (2)注意×34要写在算式最后面,小括号的正确用法。

  五、延学P12——6(机动)

《运算》教学设计14

  (一)教学目标

  1.使学生掌握含有两级运算的运算顺序,正确计算三步式题。

  2.让学生经历探索和交流解决实际问题的过程中,感受解决问题的一些策略和方法,学会用两三步计算的方法解决一些实际问题。

  3.使学生在解决实际问题的过程中,养成认真审题、独立思考等学习习惯。

  (二)教材说明和教学建议

  教材说明

  1.本单元的内容结构及其地位作用。

  本单元主要教学并梳理混合运算的顺序。混合运算前面学生已经学会按从左往右的顺序计算两步式题,并且知道小括号的作用,这里主要教学含有两级运算的运算顺序,并对所学的混合运算的顺序进行整理。主要内容有:整理同级运算的顺序,教学并整理含两级运算的顺序及含有小括号的运算顺序、有关0的运算。具体安排如下:

  2.本单元教材的编写特点。

  (1)解决问题与四则混合运算顺序的梳理有机结合起来。

  本单元在整理混合运算顺序时,是结合解决问题进行的。目的是使学生在解决一个个实际问题的过程中,进一步掌握分析解决问题的策略和方法,同时体会运算顺序规定的必要性,从而系统地掌握混合运算的顺序。

  (2)为学生提供自主探索与合作交流的情境和空间。

  本单元是从解决问题的角度教学整理四则混合运算的顺序,其中的问题是需要两三步计算解决的问题。教材创设了热闹的滑雪场情境,由此生出一系列的情境串,引出相应的4个例题。每个例题都呈现了学生交流不同的解题思路,以及整理混合运算的画面,以鼓励学生在已有的知识基础上,积极思考,主动解决问题。

  教学建议

  1.将探求解题思路过程与理解运算顺序有机结合起来。

  本单元是让学生在经历解决问题的过程中,感受混合运算顺序规定的必要性,掌握混合运算的顺序。因此,教学时,要充分利用教材提供的生动情境,放手让学生独立思考,自主探索,并在合作交流的基础上形成解决问题的步骤和方法,先求什么?用什么方法计算?再求什么?又用什么方法计算?最后求什么?用什么方法计算?使解题的步骤与运算的顺序结合起来。当学生列出综合算式后,还要追问每步算式列出的依据及表示的实际意义,促进学生正确地概括出混合运算的运算顺序。

  2.帮助学生逐步掌握解决问题的步骤和策略。

  本单元混合运算的顺序是结合解决问题进行的,其中解决问题的步骤和策略又是重点和难点之一。教学时,要注意加强数量关系的分析,在叙述解题思路时,要引导学生透过数看到量,用量的关系来描述解题思路。如,可引导学生这样描述思路“先算出每天接待多少人,再计算6天接待多少人”。不要停留在“先用987÷3,再乘6”的描述方式上。可能开始时学生不习惯,但要逐步培养这种分析方法。

  3.本单元内容可以用6课时进行教学。

  (三)具体内容的说明和教学建议

  (第2~16页)

  1.主题图。

  编写意图

  主题图“冰雪天地”为学生展示了雪地里活动的场景。从活动区域指示牌上可以看出滑雪区、滑冰区和冰雕区,场景图中还给出了三条信息:滑冰区有72人,滑雪区有26人,冰雕区有180人。给学生提问题提供了数据。

  教学建议

  教学时出示主题图后,可以开展以下两项活动:

  (1)说一说图中的人们在干什么?“冰雪天地”分成几个活动区?每个区有多少人?你是怎么知道的?

  (2)根据图中提供的信息,你能提出哪些问题,怎么解决?

  学生提出的问题可以先在小组里交流,然后在班上交流。交流时,学生可能只说出问题,丢掉相关的条件,这时教师要引导学生完整地表述条件和问题,让学生感受数学问题的整体性。另外,学生提出的问题可能用一步计算解决的,也可能用两步或两步以上计算解决的,只要合理,教师都要给予肯定。在学生广泛提出问题的基础上,再引出例1。

  2.例1。

  编写意图

  (1)例1通过应用加减法知识解决两步计算的实际问题,来明确加减混合运算的顺序。

  (2)教材以主题图“冰雪天地”的“滑冰区”为背景,提供了一天上、下午滑冰人数的变化信息,提出“现在有多少人在滑冰”的问题。由于学生积累了较为丰富的解决此类问题的生活经验和知识经验,教材中呈现了两个学生的解决方法,一个是分步列式解答的,另一个是列综合算式解答的,通过计算使学生理解加减混合运算顺序,是按从左到右的顺序进行计算。

  教学建议

  (1)出示例1后,可以放手让学生独立思考、尝试解答,并能与同伴说说自己是怎样想的?

  (2)组织反馈,并在全班交流,主要交流自己的解题思路,根据是什么?每步算式表示什么意义?然后从思路上对比分步列式和综合算式,使学生明确它们都是用加减法两步运算解决问题,并进一步明确加减混合运算要按从左往右的顺序计算。

  (3)以小组合作的方式,让学生根据自己日常生活经验,编出一些类似例1的实际问题,如乘公交车时的“上车下车”,学校图书室的“借书还书”等等,使学生在用加减两步运算解决问题的过程中,巩固加减混合运算的运算顺序。

  3.例2及“做一做”。

  编写意图

  (1)教材以“冰雪天地”接待游人的信息为素材,通过解决“6天预计接待多少人?”引导学生观察所列混合算式,明确乘除混合运算的顺序。在例1、例2的基础上,教材总结出:在没有括号的算式里,如果只有加、减法或者只有乘、除法,都要按从左往右的顺序计算。

  (2)解决“6天预计接待多少人?”教材呈现了学生的两种不同解法,一种是先求出平均每天接待的人数,再求6天一共接待的人数;另一种是先算出6天里有几个3天,再用算出的结果去乘3天接待的人数。这样编排目的是鼓励学生积极思考独立解决问题。

  (3)“做一做”的第2题是配合例2的练习,其中解决问题所需的一个条件“12瓶”隐含图中的箱子上。

  教学建议

  (1)在学生读题后,让学生尝试说一说自己是怎样理解“照这样计算”一句话的含义。同桌的相互说一说,再组织在班上交流,使每个学生明白“照这样计算”的意思是每天接待的人数,按“3天接待987人”计算。

  (2)引导学生画线段图表示相应的'数量关系。由于学生已有一些画线段图的基础,教学时可以提出以下问题:①3天接待987人怎样用线段图表示出来?②6天里接待多少人?又怎样用线段图表示?让学生尝试画一画,并组织交流。对画图有困难的学生教师要给予指导,然后让学生把自己的线段图画在黑板上,引导学生评价,特别是评价表示6天接待人数的线段的长短。因为它直观形象地表示出第二种解法的数量关系,在画图的基础上让学生探索解决问题的方法。

  (3)要重视解题过程的反思。当学生独立尝试解决后,要让学生说说解题思路和每一步计算结果所表示的实际意义,如987÷3=329表示平均每天接待的人数,6÷3=2表示6天里含有两个3天即两个987人,等等。

  (4)在比较例1与例2的基础上,让学生总结出在没有括号的算式里只有加减法或只有乘除法的运算顺序。

  4.例3及“做一做”。

  编写意图

  (1)例3通过解决需用三步计算的实际问题,教学“积商之和(差)的混合运算”。

  (2)教材以星期天玲玲一家三口去“冰雪天地”游玩购买门票为解决问题的现实背景。

  先通过解决“购门票需要花多少钱”,来总结“在没有括号的算式里,既有加减法又有乘除法的混合运算”的顺序。

  然后再提出“你还能解决其他数学问题吗?”鼓励学生根据情境中给出的门票信息,提出问题并加以解答。同时根据上面总结出的混合运算的运算顺序尝试列综合算式进行解答,以进一步掌握混合运算的顺序。

  (3)“做一做”第1题有三组题,每组题中上、下两题参与运算的数和排列顺序都相同,只是运算符号不同,有的是同级运算,有的是两级运算,让学生通过判断其运算顺序是否相同巩固混合运算的运算顺序,逐步养成认真审题的习惯。

  教学建议

  (1)像例3这样一家三口购票一共要用多少钱的问题,数量关系不难理解且学生也已接触过,教学时可以让学生独立思考,自主解答。如有学生对“半价”不理解,教师可加以说明。一般学生分步解答并不困难,但对如何列综合算式解答可能会有一定困难,教师要引导学生想办法把分步算式合并成一个算式,在合并时,结合解答过程说明运算的顺序:“在没有括号的算式里,有乘、除法和加、减法,要先算乘、除法。”

  (2)学生解答完“购门票需要花多少钱”后,可以让学生根据情境呈现的信息,提出其他问题,进行交流。学生根据自己的生活经验可能提出各种各样的问题,如“爸爸付出100元,应找回多少钱?”“买1张成人票,3张儿童票,一共要付多少钱?”等,在学生充分交流的基础上,再让学生解答教材上的问题:“买3张成人票,付100元,应找回多少钱?”在这一环节中,教师要注意两点:第一,学生提出的问题不管是几步计算解决的,只要能作出合理解释的,都应给予鼓励;第二,对于两步以上解答的,可引导学生列综合算式解答,在此过程中巩固上面总结的混合运算的顺序。

  (3)“做一做”第2题,让学生独立解答第一问,再组织提问题练习,如果学生提出一步计算的问题,教师也应肯定。

  5.关于练习一中一些习题的说明和教学建议。

  第1题,是同级运算的练习。通过口算让学生进一步理解没有括号的乘除混算与加减混算顺序一样,都是按从左到右的顺序进行。练习时,可以直接将结果填在书上,再组织订正。

  第2题,是例1的巩固练习。学生根据自己的生活经验,弄清“便宜”与“贵”的含义后,独立进行解答。

  第3题,是例2的巩固练习。解决问题的信息比较隐蔽:六边形有6条边隐含在图中,一共有多少根小棒需要先算出,正方形有4条边需要学生明确。教学时,可让学生独立解答,以提高学生寻找信息理解信息的能力。订正时,要注意学生所列的综合算式是否正确。

  第4题,用统计表给出某路口1小时通过的三种汽车数。让学生先估算再笔算这个路口1小时一共通过的汽车辆数,以培养学生的估算意识。学生估算的结果可能不同,只要合理都要鼓励。

  第5题,是有两级运算的练习,先让学生说说运算顺序,再脱式计算,要提醒学生脱式计算时能口算的尽量口算。

  第6、7题,是例3的巩固练习。在审题的基础上,先独立完成,再交流。第6题是两问,后问是求两积之差。第7题是求两商之差,且路程160千米被用了两次,练习后要引导学生比较,感受到它们都是应用路程、速度和时间三者关系解决的实际问题。

  第9题,先让学生说一说自己是怎样理解“养鸭的只数是鸡的一半”这一条件的,然后独立解答。为使一题多用,教师也可以提出:如果条件不变,你还能提出什么问题?怎样解答?还可以加一个条件,提出:“养鹅的只数与鸡同样多”其他条件不变,问题改成“李伯伯家一共养鸡、鸭和鹅多少只?”怎样解答?

  第10题,解题思路有:①先求上、下两层相差多少本,再求上、下层各有多少本;②先求上、下两层现在各有多少本,再求原来两层各有多少本。

  练习一后面的思考题,通过选择适当的运算符号或填加小括号使等式成立。使学生进一步看到,由于选择的运算符号和小括号的位置不同,得数就不同,从而加深对运算符号和小括号的作用的理解。每小题的答案不唯一,现介绍一些。

  ①3-(3-3÷3)=13÷3-(3-3)=1

  ②3÷3+3÷3=2(3×3-3)÷3=2

  ③3×3-3-3=33+(3-3)×3=3

  ④3+3+3÷3=73+(3÷3)+3=7

  ⑤3×3-3÷3=8

  ⑥3×3÷(3÷3)=93×3÷3×3=9

  6.例4。

  编写意图

  (1)例4通过解决实际问题,来总结含有小括号的混合运算的运算顺序。

  (2)例4是既可以用三步计算解决,也可以用两步计算解决的实际问题。它以冰雕区的活动场景为题材,完全用文字提供了一个实际问题的全貌,含有三条数学信息:上午有游人180位,下午有270位,每30位游人派一位保洁员。问题是:下午比上午多派几位保洁员?教材在学生分析思考的基础上呈现了两个学生不同的解题方法:第一种方法是先求上午要派几位保洁员,再求下午要派几位保洁员,最后求下午比上午多派几位保洁员;第二种方法是先求下午游人比上午多多少位?再求下午比上午多派几位保洁员。在分步解决的基础上,再将上面的两种解法分别列成一个算式,并进行计算,最后得出含有括号的算式的运算顺序:先算括号里的。

  教学建议

  教学时,应注意以下几点:

  (1)引导学生认真解读题意。解读“每30位游人需要派一位保洁员”时,需要明白两点:一是游人数与保洁员人数之间的关系,游人越多,派出的保洁员越多;二是上午与下午派保洁员的标准一样,都是按每30位游人派一位保洁员。为帮助学生更好地理解这句话,教师可以问:60位游人要派几位保洁员?90位游人呢?有多少游人要派5位保洁员呢?学生回答后要让学生说出自己是怎么想的?根据什么?通过以上的解读活动,为学生分析数量关系,寻找解题思路做好铺垫。

  (2)让学生尝试分析数量关系时,教师要引导学生按照:要求下午比上午多派几位保洁员,先要求什么?再要求什么?……的思路去独立思考,并尝试解答,教师要巡视是否出现不同的解法。

  (3)注重交流解题思路。当学生尝试解答后,要组织学生在全班交流不同的思考方法,如果学生想不出第二种方法,教师要给予适当启发:下午游人比上午多多少位?每多派一位保洁员,就得多多少位游人?怎样求出下午比上午多派几位保洁员?逐步引导学生列出算式,计算时,要使学生明白为什么先算括号里的,体会小括号的作用。

  (4)要重视两种不同解决方法的对比。教学时引导学生从思路上、方法上和解题步数上进行比较,体会到解决问题的思路不同,解决方法也不同,计算的步数也不一样,有些实际问题用三步计算解决也可以用两步计算来解决。

  (5)例4后的“做一做”是一道图文结合的实际问题。由于贴近生活,学生会用两种方法解决,100-54-6,100-(54+6),要让学生说思路和方法,为什么要使用小括号。

  7.例5。

  编写意图

  (1)例1~例4都是以主题图“冰天雪地”为题材编排的实际问题。学生经历了解决实际问题的过程,不仅逐步掌握了解决实际问题的策略和方法,而且理解了四则混合运算顺序的必要性,掌握了四则运算的运算顺序。例5就是在以上基础上安排的。

  (2)例5引导学生结合具体四则混合运算式题,总结四则混合运算的顺序。

  教材首先让学生独立计算例5中的两小题,探讨为什么参与运算的数、排列顺序及运算符号都相同,而计算结果却不一样,使学生再一次认识小括号的作用,进一步掌握混合运算的顺序。

  在此基础上,教材让学生结合具体式题,总结四则混合运算的顺序。

  教学建议

  (1)由于学生对四则混合运算中,先算什么,再算什么,最后算什么,已经积累了一些经验,因此教学例5时,可以采用自主探究和小组合作相结合的学习方式开展学习活动。例5中的两小题出示后可分三步进行:第一步,让学生在书上的算式里标出运算顺序号,如:

  同桌互评后独立计算,把计算过程填写在书上,然后互相核对结果。第二步,分小组讨论,再派代表在全班交流。讨论交流的问题是:例5中的两小题有什么相同的地方?有什么不同的地方?两题的计算结果为什么不一样?第三步,引导学生用术语和、差、积、商来表述运算过程,如例5中的第(1)题可以这样说,首先求差,然后求积,最后求和。

  在学生明确了加法、减法、乘法和除法统称四则运算后,再以小组合作的形式总结四则运算的运算顺序,在整理的基础上教师可以做如下板书:

  (2)例5后面的“做一做”,第1题先让学生用术语和、差、积、商说说运算顺序,然后计算。其中,第(2)小题学生练习后,教师可指出:算式里含有两个小括号的,可以同时脱式。第2题要求学生列综合算式解答。

  8.例6。

  编写意图

  (1)在第一学段,学生刚开始学习加减法,就认识了0,掌握了有关0的加、减法计算,明白了这些加减法的含义,随着知识的不断扩展,在学习乘、除法时,又认识了0在乘除运算中的特性,之后学生又经历了许许多多的实际计算,进一步掌握了0在四则运算中的特性,体会到0在四则运算中的地位和作用。为了把分散学习的有关0的运算这部分知识系统化,提高学生计算的正确率和整理概括知识的能力,教材编排了例6。

  (2)例6首先提出:“想一想,你知道哪些有关0的运算。应该注意些什么?”接着又以一幅小组合作学习的画面,生动地展示了同学们讨论交流的情境,对0在四则运算中的特性作了比较系统精练的总结。这样安排的问题和学习形式,能充分调动学生的积极性。

  (3)教材通过“注意”,特别说明0不能作除数及0为什么不能作除数的道理。0为什么不能作除数这部分知识很重要,也很难理解,以后学习分数、比等知识要用到。为了帮助学生突破难点,教材中联系除法的意义举例作了说明:先举5÷0,说明不可能找到商,再举0÷0,说明不可能得到一个确定的商。

  教学建议

  教学时,应注意以下几点:

  (1)要给学生留有充分的时间,让他们回忆、整理和概括有关0在四则运算中的特性。教学时,可以采用小组合作形式,大家在组内畅所欲言,并派一人记录,然后在全班交流。教师根据学生交流的内容,有针对性分加、减、乘、除法板书出实例,再引导学生分类概括出结语。学生总结出的话可能没有书上那样精练,但只要意思相似,教师都应鼓励,并让学生看看书上的小朋友是怎样说的。如果学生以结语的形式表达有关0的运算,可让他再举例说明。总之,教学时教师只能适当引导,让学生充分发表意见和看法,不要包办代替。

  (2)0为什么不能作除数是个难点,教学时要引导学生通过举例来说明,比如让学生举出除数是0的除法的例子,5÷0=□0÷0=□,问:如果用0作除数结果会怎样?引导学生分两种情况分析:①5÷0=□表示一个非零的数除以0,从除法的意义上说是什么意思,商是多少,引导学生说出积是5,一个因数是0,求另一个因数,要想0和几相乘得5呢?因为一个数和0相乘仍得0,所以5÷0不可能得到商。②0÷0,从除法意义上说是什么意思,商是多少,引导学生说出积是0,一个因数是0,求另一个因数,要想0和几相乘得0,然后问:能找到这样的数吗?能,因为0和任何数相乘都得0,这时指出0÷0得不到一个确定的商,所以不研究,最后得出0不能作除数的结论。

  (3)例6后面安排了一个数学游戏,明确题意后分小组活动,把和为340的算式记下来,便于交流和评价。

  9.关于练习二中一些习题的说明和教学建议。

  第1题,先口算,再竖着比上下三题的异同点,从中体会运算顺序的重要性。

  第2题,是含有小括号的两三步计算的式题,让同桌的同学相互说说运算顺序后独立练习,教师指出算式中有两个小括号的,可以同时脱式。

  第3题,要求学生用综合算式解答,并说出小括号里的算式表示的实际意义,体会小括号的作用。

  第4题,学生做完后,可以引导学生竖着比较上下三小题的相同处和不同处,学生的回答可能比较“乱”,只要说对的都要鼓励,并在此基础上整理成:上下三题中参加运算的数、运算符号以及排列顺序都相同,但是由于加了小括号,改变了运算的顺序,导致计算结果不同,所以在计算混合式题之前,要审题,根据运算顺序来确定怎样算,然后再计算,养成良好的计算习惯。

  第5题,是以统计表的形式提供了数据信息,先让学生估计平均每组做的个数,再计算精确数,通过估算与笔算结果比较,培养学生的估算意识

  第6题,在学生用一个算式解答后,要引导学生将具体情况与除法意义联系起来,说说为什么两步都用除法解答,使学生进一步体会“倍”的含义。

  第7题,可以用三步计算也可以用两步解决的实际问题,审题后可让学生尝试用两种方法解答,然后用自己的语言表达解题思路,体会解决问题策略的多样性,又为今后学习乘法分配律做些孕伏。

  第8题,是一道填表练习,让学生经历“填表—说思考过程—观察比较表中数据变化”这一过程,加深对路程、速度、时间三者之间关系的理解,体会两个变量之间的依存关系和变化规律。

  第9题,通过“凑24”游戏,复习四则混合运算。4张牌上的点数代表4个数,要求经过适当的四则运算使这四个数变成24。练习时首先让学生读懂题意,明确要求,然后独立解答。对少数学困生要进行辅导,当多数学生写出三四个不同算式后,组织交流、评价。最后归纳出在凑数过程中主要运用8×3、4×6、12×2等基本算式。下面是几个参考算式:

  6×2+4×3(6+4-2)×36×4÷(3-2)6×3+2+4

  (6-3)×4×2(6÷2+3)×4(6×2-4)×36×4×(3-2)

  第10题,以选择一日游购票方案为题材,给出了多个信息,启发学生利用生活经验理解问题情节,通过计算与比较获得合理的购票方案。练习时应让学生在独立思考的基础上交流各自的想法,感受数学与生活的联系,增强数学应用意识。

  第11题,是运用加减、乘除之间关系进行推理的练习题。练习时,先要明白图形表示的是什么数,再独立思考,作出正误判断,最后组织全班交流思考过程及依据,并归纳出

  第12、13题,先让学生独立练习,再交流自己的思考过程,从中感悟解决问题的基本思路。第12题,有两问且不互相联系,避免一问结果是解决二问的条件的干扰,教育学生审题的重要性。第13题,是“倍”的含义在生活中的应用,引导学生着重弄清有关“倍”的不同应用,加深对“倍”的含义的理解。

  第14题,实际上是把三个一步算式合并成一个三步算式。练习时先引导学生明白不同的图形代表不同的数,弄清图形之间的数量关系,再启发学生用代换方法进行思考,这种练习既能培养学生的分析综合能力,又为今后学习用字母表示数打下基础。

  思考题,是一道逆推的问题。密码是个四位数,百位和个位上数字一样,千位和十位数字一样,启发学生用逆推的方法确定○与□各是多少。通过练习,既加深学生对四则运算中各部分之间关系的理解,又培养了学生逆向推理能力。

  (四)参考教案

  教学内容:教科书第6页例3及“做一做”,练习一中的第5题~7题。

  教学目标:

  1.让学生从实际问题的解决过程中感受“先乘除后加减”的道理。

  2.掌握含有两级运算(没有括号)的运算顺序,并能正确计算。

  3.培养学生完整地叙述问题的能力。

  4.培养学生养成良好的学习习惯,提高学生的计算能力。

  教具准备:例3课件(教学挂图)。

  教学过程:

  一、复习导入

  出示下表:

  这是“冰雪天地”游乐场接待人数的统计表

  提问:根据表中提供的数据,你能提出哪些数学问题?

  根据学生回答,出示:

  3天一共接待987人,照这样计算,一周预计接待多少人?

  学生列式解答。并说说计算顺序。

  导入新课:

  师:星期天,爸爸妈妈带玲玲去“冰雪天地”游玩。

  课件出示情境图,引导学生看图。提问:从图中你看到了什么?

  二、探究新知

  1.教学例3。

  (1) 学生分组讨论,在组内交流获取的信息,小组汇报。

  师:谁能用语言完整地叙述问题?

  师引导,学生回答,教师课件出示:星期天,爸爸妈妈带着玲玲去“冰雪天地”游玩。成人票每张24元,儿童票半价。购门票需要花多少钱?

  提问:成人票每张多少元?半价是什么意思?儿童票每张多少元?要买几张成人票?几张儿童票?要解决什么问题?

  提问:要求购门票一共需要花多少钱,必须先求什么,再求什么,最后求什么?

  (2) 列式解答。

  生1:24+24+24÷2

  生2:24×2+24÷2

  师板书,提问:它们之间有什么联系?

  24×2表示什么意思?24÷2表示什么意思?

  让学生独立解答。

  (3) 引导学生进行比较。

  复习题的算式与例3的算式有什么不同?

  揭示课题:这就是我们今天这节课要学习的内容。(板书课题:混合运算)

  提问:在没有括号的算式里,有乘、除法和加、减法,要先算什么?

  生回答,师小结:在没有括号的算式里,有乘、除法和加、减法,要先算乘、除法。

  2.提问:你还能提出其他问题吗?小组讨论并交流。

  学生可能提出:买1张成人票,3张儿童票,一共要付多少钱?

  买3张成人票,付100元,应找回多少钱?

  ……

  学生独立列综合算式解答,并说出计算顺序。

  3.比较:这些算式与例题算式有什么异同?

  学生回答,教师归纳并小结,深化运算顺序。

  4.反馈练习:第7页“做一做”第1题。

  三、练习

  1.说出下面各题的运算顺序,再计算。

  203-134÷228+120×8

  97-12×6+4326×4-125÷5

  2.同学们植树,四年级140人,每人植树2棵;五年级120人,每人植树3棵。这两个年级一共植树多少棵?

  3.果园里有苹果树48棵,桃树的棵数是苹果树的2倍,梨树的棵数比苹果树和桃树的总数多12棵。果园里有梨树多少棵?

  4.三、四年级学生进行体操比赛,其中三年级有240人,四年级有300人。每12人站成一排,四年级比三年级多站几排?

  四、总结

  教师引导学生总结:今天这节课你学习了哪些知识?有什么收获?

  五、布置作业

  练习一第6、7题。

《运算》教学设计15

  教学目标:

  知识与技能:运用分数除法的计算方法解决分数连乘,和分数乘除混合运算。

  过程与方法:通过互相交流、互相评价、培养学生的分析判断、推理反思的能力。

  情感态度与价值观:引导学生积极参与数学活动,提高计算能力,培养学生认真、仔细的习惯。

  教学难点:灵活运用学过的知识,解答日常生活中的实际问题。

  教法与学法:讲授法、练习法。

  教学准备及手段:多媒体课件。

  教学过程:

  一:预习情况报告。

  1、各小组为单位展示自己的预习笔记。

  说说自己的预习所得、困惑。

  2、请你根据每一行的算式说一条整数四则运算的顺序。

  12×(24÷8)75÷(15×6)。

  教师强调:有括号的,先算括号里面的运算,再算括号外面的运算:没有括号的,先算第二级运算,再算第一级运算;同一级运算,从左往右依次运算。

  二、引入新课:

  1、出示例题3。

  阅读与理解。

  1、学生阅读题目,理解题意。

  (1)条件一:每次吃1/2片。

  (2)条件二:每天吃3次。

  (3)所求的问题:12片可以吃几天?

  分析与解答。

  (1)学生独立思考,尝试解答。

  教师巡视,指导有困难的学生。

  (2)交流解题思路,和解题方法。

  思路一:先算出每天吃多少片,再计算12片可以吃几天。

  解法:1/2x3=3/2(片)。

  12÷3/2=8(天)。

  思路二:先算出这盒药可以吃几次,在计算可以吃几天。

  解法:12÷1/2=24(次)。

  24÷3=8(天)。

  (3)回顾与反思。

  组织检验答案的合理性。

  (1)学生尝试检验。

  方法一:1/2x3=3/2(片)。

  3/2x8=12(片)。

  方法二:3x8=24(片)。

  1/2x24=12(片)。

  列综合算式表示解题思路。

  12÷(1/2x3)。

  12÷1/2÷3。

  2、用综合算式表示解题思路。

  (1)学生根据上面的解题方法列出综合算式。

  (2)交流运算顺序。

  指名说说每个综合算是的运算顺序。

  (3)学生独立解答。

  (4)组织汇报交流。

  三、巩固练习。

  1、教材的`“做一做”

  2、挑战自我。

  四、全课总结:

  1、说一说,今天学习了什么新知识?

  2、这节课,你有什么收获吗?有什么发现吗?有什么想要告诉老师和同学的吗?请大家发表自己的见解。

  五、布置作业。

  1、教材练习七的第7、8题。

  2、预习下一节内容,写出简单的预习笔记,划出困惑的地方。

【《运算》教学设计】相关文章:

《同级运算》教学设计04-16

混合运算的教学设计01-26

小数加减混合运算教学设计02-10

乘法运算定律教学设计优秀05-27

三年级数学《混合运算》教学设计05-14

《数的运算》说课稿05-20

《头饰设计》教学设计10-27

教学设计01-14

集合基本运算说课稿01-11