三角形的面积教学设计

时间:2024-08-25 16:38:33 教学设计 我要投稿

三角形的面积教学设计

  作为一位杰出的教职工,就不得不需要编写教学设计,教学设计是对学业业绩问题的解决措施进行策划的过程。写教学设计需要注意哪些格式呢?下面是小编为大家整理的三角形的面积教学设计,欢迎大家借鉴与参考,希望对大家有所帮助。

三角形的面积教学设计

三角形的面积教学设计1

  教学内容:三角形面积计算的练习(练习十八5~10题)

  教学要求:

  1.是学生比较熟练地应用三角形面积计算公式计算三角形的面积。

  2.能运用公式解答有关的实际问题。

  3.养成良好的审题、检验的习惯,提供正确率。

  教学重点:运用所学知识,正确解答有关三角形面积的应用题。

  教具准备:展示台

  教学过程:

  一、基本练习

  1.填空。

  (1)三角形的面积=,用字母表示是。

  为什么公式中有一个“÷2”?

  (2)一个三角形与一个平行四边形等底等高,平行四边形的底是2.8米,高是1.5米。三角形的面积是()平方米,平行四边形的面积是()平方米。

  2、练习十六2题

  二、指导练习

  1.练习十六第6题:下图中哪两个三角形的面积相等?(两条虚线互相平行。)你还能画出和它们面积相等的三角形吗?

  ⑴生用尺量一量这两条虚线间的距离,搞清这两条虚线是什么关系?

  ⑵看看图中哪两个三角形的面积相等?为什么?

  ⑶分组讨论如何在图中画出一个与它们面积相等的三角形,并试着画出来

  2.练习十六第7题

  (1)让学生尝试分。

  (2)展示学生的作业

  可能有:a、根据等底等高的三角形面积相等这一结论,只要把原三角形分成4个等底等高的小三角形,它们的面积就必然相等。而要找这4个等底等高的小三角形,只需把原三角形的某一边4等份,再将各分点与这边相对的顶点连接起来即可。

  b、也可把原三角形先二等分,再把每一份分别二等分。

  3、练习十六9*

  让学生抓住涂色的三角形的底只有平行四边形底的一半,它的高和平行四边形的高相等,平行四边形的`面积=底×高,三角形的面积=(底÷2)×高÷2,所以三角形的面积等于48÷4

  4.练习十六第3题:已知一个三角形的面积和底,求高?

  让学生列方程解和算术方法解,算术方法176×2÷22,要让学生明确176×2是把三角形的面积转化成了平行四边形的面积。

  三、课堂练习

  练习十六第8*题。

  四、作业

  练习十六第4、5题。

  课后记:

三角形的面积教学设计2

  教学内容:

  《现代小学数学》第九册第31~35页,三角形面积的计算。

  教学目标:

  一、了解三角形面积计算公式的推导过程,掌握求三角形面积的计算方法。

  二、能运用三角形面积计算公式进行有关的计算。

  三、渗透对立统一的辩证思想。

  教学过程:

  一、复习引入。

  1.准备练习:你会计算这些图形的面积吗?这些图形的面积在计算时,同哪些因素有关?

  出示:

  2.提问:图(4)是一个什么图形?你会计算它的面积吗?猜一猜,三角形的面积同哪些因素有关?

  3.揭题:大家猜得究竟对不对,下面我们就一起来探求“三角形面积的计算”方法。(出示课题)

  【设计意图:通过“猜”,引导学生从新旧知识的联系中,大胆地提出假设,为新课展开做好铺垫,同时激发学生急于想验证假设的认知欲望。】

  二、新课展开。

  (一)实践活动。

  1.让学生拿出已准备好的如下一套图形。(同桌合作)

  (1)测量各平行四边形(含长方形)的底和高,算出面积,并填入表格内。

  (2)找出与平行四边形等底等高的三角形,将相应的编号填入表格内。

  (3)分组讨论:

  ①各三角形的面积是多少?请填入表格内。

  ②三角形的面积怎样计算?

  (4)汇报、交流,初步得出三角形面积计算方法。

  【设计意图:通过实践活动,让学生自己研究问题、分析问题,初步得出三角形面积的计算方法,从而突出了学生的主体地位,既让学生主动参与知识的获取过程,又从找对应关系中,渗透了对应关系的教学。】

  2.验证。

  (1)拿出如右图的三角形,要求剪一刀或两刀,拼成一个与原三角形面积相等的平行四边形。

  数学课堂教学参谋

  (2)汇报、交流:学生有几种剪拼法,就交流几种。如:

  ①

  6×4÷2 6×(4÷2)

  =12(平方厘米) =12(平方厘米)

  ②

  6×4÷2 6÷2×4

  =12(平方厘米) =12(平方厘米)

  【设计意图:通过验证,培养学生科学的态度,同时从启发学生应用不同的剪拼法中,培养学生的发散思维。】

  (二)归纳、小结。

  1.从上面的实践活动中,你能说出求三角形面积的计算公式吗?三角形的面积同哪些因素有关?证明“三角形面积=底×高÷2”。(板书:三角形面积=底×高÷2)

  2.如果用s表示三角形的.面积,a和h分别表示三角形的底和高,那么三角形的面积公式可以怎么写?(板书: s= ah÷2)

  (三)应用。

  例 一块三角形钢板,底是8米,高是2.5米,它的面积是多少?

  学生试做后,反馈、评讲。

  【设计意图:通过试做例题,让学生及时把发现的三角形面积计算方法应用于实践,同时起到及时巩固作用。】

  三、巩固练习。

  (一)基本练习。

  1.口算出每个三角形的面积。

  ①底8米,高7米 ②底5分米,高12分米③a:4厘米,h:2.5厘米 ④a:20分米,h:5.4分米

  2.课本35页第②题,看图填写答案。(每一格代表1平方厘米)

  这些三角形的高都是____厘米,底都是____厘米。

  这些三角形的面积都是:□×□÷2=□(平方厘米)。

  3.先量一量,标出图形的长度后,再计算各三角形的面积。

  【设计意图:通过三道基本练习,进一步促进全体学生掌握三角形面积的计算方法,尤其是第3道题,使学生进一步明确要求三角形面积,需要知道三角形的底和高。】

  (二)分层练习。

  a组学生:做选择题。

  ①求右图面积的算式是( )。

  a.9×4÷2 b.15×4÷2

  c.15×9÷2 d.15×4

  ②求右图面积的算式是( )。

  a.5.2×3.5÷2

  b.5.2×4.1÷2

  c.4.1×3.5 d.4.1×3.5÷2

  ③求下图面积的算式是( )。

  a.25×20 b.18×25

  c.18×20 d.18×20÷2

  b组学生:做课本第15页第

  ②题:在格子图上画面积都是12平方厘米的三角形(每一小格表示1平方厘米),并在表中分别填上所有三角形的底和高。(图、表见课本。略)

  c组学生:先求出下面三个三角形abc、bcd、bce的面积。再比较一下,它们的面积相等吗?为什么?

  【设计意图:通过分层练习,使 a、b、c三层的学生在数学思维、数学能力方面均有提高,以体现因材施教的原则。】

  四、课堂小结。

  这节课研究了哪些内容?三角形面积计算方法是什么,你是怎么研究出来的?

  【设计意图:通过提问,不仅回顾了所学知识,而且总结了所研究的方法,真正体现出不仅要授之以“鱼”,更要导之以“渔”。】

  五、布置作业。(略)

  (此文获“第二届全国小学课堂教学征文大赛”一等奖)

三角形的面积教学设计3

  【教学内容】

  探索活动(二)《三角形的面积》教材第25页——26页

  【教学目标】

  知识目标:①使学生经历、理解三角形面积公式的推导过程。

  ②能正确运用公式进行三角形面积计算,初步学会用转化的数学方法解决实际问题。

  能力目标:①通过动手操作、认真观察、比较、思考等方式,培养学生的空间想象能力、思维能力和较强的动手能力;②通过讨论及小组合作学习的方式,培养学生的分析综合、抽象概括能力和相互协作学习的能力。

  德育目标:①利用教材上的德育资料对学生进行爱国主义教育。②通过练习中的德育因素对学生进行交通安全教育。

  【教学重点】

  理解三角形面积计算公式,正确计算三角形的面积 理

  【教学难点】

  理解三角形面积公式的推导过程。

  【课前准备】

  三个学习小组分别准备两个完全一样的三角形(一组准备直角三角形,二组准备锐角三角形,三组准备钝角三角形,四组任意)、直尺、剪刀。

  教师准备多媒体课件一份、演示教具一套

  【教学进程】

  一 复习引入

  1、出示课件

  师:比一比,下面两个图形哪个面积大?

  生:观察 比较 说说你是怎么比较的

  师小结,比较两个图形的大小,可以用数格子、旋转、平移的方法。

  2、回顾平形四边形面积公式的`推导

  师:谁能告诉老师平形四边形面积公式推导过程

  生答后,师课件演示

  师:在这个过程,我们运用了一个什么数学思想。

  生:转化

  师板书:转化

  师:现在,我们已经掌握了几种图形的面积公式了呢?

  生答后,师简要小结

  3、设疑,引入新课

  小明有一张彩纸(课件出示),他想知道这张纸 面积,前面我们已经掌握了长方形、正方形、平行四边形的面积计算方法,可这却是个三角形,怎么计算三角形的面积呢?大家想不想来探究一下这个问题?(生答)好,那今天,我们就来学习这个知识

  师板书:三角形的面积

  二、探究新知

  1、知识猜想

  师:学习之前,大家先猜一猜,三角形的面积可能跟什么有关?

  生讨论、作答(可能和底、高有关)

  2、动手实践

  一组学生拿出直角三角形学具

  二组拿出锐角三角形学具

  三组拿出钝角三角形学具

  四组拿出任意三角形学具

  剪一剪、拼一拼,你能发现什么?

  师巡回检查、指导

  3、实践汇报

  各组汇报实践结果

  一组:我们是拿两个完全一样的三角形通过旋转、平移拼成了一个平形四边形或长方形(长方形也是特殊的平行四边形),这个平行四边形的面积是原三角形面积的2倍,可以通过平行四边形面积算出三角形的面积。

  二组:两个完全一样的锐角三角形也可拼成一个平行四边形。

  三组:两个完全一样的钝角三角形也可拼成一个平行四边形。

  四组:用一个三角形,从他的高的中点处画一条底边的平行线,沿着平行线剪开成一个三角形和一个梯形,再旋转,也可以拼成一个平行四边形,而且这个平行四边形的面积就等于原三角形的面积。

  各组就实践汇报展开讨论。

  4、演示总结

  师:同学们非常聪明,发现了这么多的方法,教师也想了几种方法,大家看一看和你们想的一样不一样?

  出示课件(演示1两个完全一样的三角形拼成平行四边形)

  师引导生观察

  (1)、拼成的平行四边形和原三角形面积有什么关系?

  生:平行四边形面积是三角形面积的2倍。

  (2)、平行四边形的底和高与三角形的哪些部分有关?

  生:平行四边形的高等于三角形的高;

  平行四边形的底等于三角形的底

  师小结并板书

  平等四边形的面积= 底 × 高

  三角形的面积= 底 × 高 ÷ 2

  出示课件(演示2一个三角形剪拼成平行四边形)

  师:观察平行四边形面积与原三角形面积有何关系?

  生:相等

  师:平行四边形的底和高与三角形底、高有什么关系?

  生:平行四边形的底等于三角形的底

  平行四边形的高等于三角形的高的一半

  师小结并板书

  平行四边形面积= 底 × 高

  三角形面积= 底 × 高 ÷ 2

  三角形的面积=底×高÷2

  字母表示: S=ah÷2

  5、师生一起回顾三角形面积公式的推导过程

  6、基本练习

  师:现在大家可以帮帮小明,算算哪张彩纸的面积了吗?

  生:能

  师:好那大家帮他算一算

  生解答,师巡回检查

  强调:1、注意运用公式 2、注意面积单位

  三、巩固检测

  1、出示课件

  师:每天上学回家,教师、家长都要叮咛同学们注意交通安全,大家认识下列交通标志吗?

  生答、师订正

  师:大家观察,这些交通标志都是什么形状?我们能不能算算他们的面积呢?

  生独立完成

  师统一订正

  2、出示课件

  师:红领巾中是我们少先队员的标志,我们每个少先队员都要佩戴并热爱他,下面就是一面红领巾图,你能算一算做100面红领巾需要多少布料吗?

  生板演 师讲解订正

  四、回顾总结

  师:学完这节课,你都有些什么收获呢?

  生讨论、作答

  师小结:这节课,我们运用能比的数学思想,通过旋转、平移、剪拼的方法把三角形能化成了已经学过的平行四边形,发现其中的联系,然后通过平行四边形面积公式推导出了三角形的面积公式。通过几道练习,同学们已基本掌握了面积公式的应用,收获了不少新知识,希望以后每节课同学们都能象今天这样满载而归。

  附:【板书设计】

  三角形的面积

  平行四边形面积 = 底 × 高

  转化

  三角形面积= 底 × 高 ÷ 2

  S= a×h÷2

三角形的面积教学设计4

  教学目标

  及重点难点

  使学生进一步熟悉三角形面积的计算公式,熟练地计算不同三角形的面积

  教学准备(含资料辑录或图表绘制)

  板书设计

  教后记

  教和学的过程

  内容教师活动学生活动

  一、练习

  二、总结一、第5题

  可以通过计算解决,也可以把三角形的底和高与平行四边形逐一进行比较。教学时,重点放在后一种方法的比较上。

  二、第6题

  要使学生画出的三角形的面积是9平方厘米,三角形底和高的乘积应是18。因此,方格纸上画出的三角形可以分别是:底6cm,高3cm;底3cm,高6cm;底9cm,高2cm;底2cm,高9cm;底1cm,高18cm。

  三、第9题

  测量红领巾高时,可以启发学生把红领巾对折后再测量。

  四、第10题

  要使学生认识到:涂色三角形与它所在的平行四边形等底等高,所以每个涂色三角形的面积都是它所在平行四边形面积的一半。

  五、思考题

  每个大三角形的面积是16平方厘米;中等三角形的面积是8平方厘米;每个小三角形的'面积是4平方厘米;平行四边形和小正方形的面积是8平方厘米。

  通过今天的练习我们对三角形面积计算方法的运用就更加熟练了,在以后的学习生活中我们还要多用它去解决一些实际问题,达到学以致用的目的。

三角形的面积教学设计5

  教学目标

  1、使学生经历操作、观察、填表、讨论、归纳等数学活动,探索并掌握三角形的面积公式,能正确地计算三角形的面积,并应用公式解决简单的实际问题。

  2、使学生进一步体会转化方法的价值,培养学生应用已有知识解决新问题的能力,发展学生的空间观念和初步的推理能力。

  教学重难点

  教学重点:理解并掌握三角形面积的计算公式

  教学难点:理解三角形面积公式的推导过程

  课前准备

  多媒体课件

  教学过程

  师生活动

  思考与调整

  一、复习导入:

  复习平行四边形面积公式的推导过程

  二、探究新知:

  1、教学例4:

  师:仔细观察这3个平行四边形,请说出如何求每个涂色的三角形的面积?先自己想,随后在小组中交流。

  学生讨论后汇报(平行四边形的面积÷2)

  师:为什么可以用“平行四边形的面积÷2”求出每个涂色的三角形的面积?三角形与平行四边形究竟有怎样的关系?三角形的面积有应当如何计算?今天继续运用“转化”的方法来研究三角形面积的计算。(板书课题:三角形面积的计算)

  2、教学例5:

  (1)出示例5:

  师:用例5中提供的三角形拼成平行四边形。(注意:组内所选的三角形都要齐全)

  (2)小组交流:

  你认为拼成一个平行四边形所需要的两个三角形有什么特点?

  要使学生明确:用两个完全一样的三角形可以拼成一个平行四边形。

  (3)测量数据计算拼成的平行四边形的面积和一个三角形的面积并填表。

  师:如何计算一个三角形的面积?从表中可以看出三角形与拼成的平行四边形还有怎样的关系?(小组交流)

  得出以下结论:

  这两个完全一样的三角形,无论是直角、锐角,还是钝角三角形,都可以拼成一个平行四边形。

  师生活动

  思考与调整

  这个平行四边形的底等于三角形的底

  这个平行四边形的高等于三角形的高

  因为每个三角形的面积等于拼成的平行四边形面积的.一半

  所以三角形的面积=底×高÷2

  板书如下:

  平行四边形的面积=底×高

  2倍一半

  三角形的面积=底×高÷2

  (4)用字母表示三角形面积公式:S=ah

  三、巩固练习:

  1、完成试一试:

  2、完成练一练:

  (1)先让学生回忆拼得过程,再回答。

  (2)要让学生说清是如何想的。

  3、完成练习三第1-3题:

  四、课外延伸:介绍第16页“你知道吗”

  五、全课总结:

  师:通过今天的学习有哪些收获?

  板书设计:三角形面积的计算

  转化

  已学过的图形新图形

  拼摆

  因为平行四边形的面积=底×高

  2倍一半

  所以三角形的面积=底×高÷2

  教学得与失:

  课题

  三角形面积的计算

三角形的面积教学设计6

  教学内容:

  九年制义务教育课本数学五年级第一学期p84—85。

  教学目标:

  1、理解三角形面积计算公式的推导过程。

  2、 掌握三角形面积的计算方法。

  3、引导学生积极探索解决问题的策略,发展动手操作、观察、分析、推理、概括等多种能力。

  4、培养学生在生活实际中发现问题、独立思考、创新思维,用旧知识转化为新知识来解决新问题的能力。

  教学重点:

  理解三角形面积计算公式的推导过程。

  教学难点:

  理解三角形面积是同底(长)等高(宽)长方形面积的一半。

  教学准备:

  教学软件、三角形学具。

  教学过程:

 一、复习铺垫。

  1、数一数下图中有几个直角三角形。

  2、我们学过计算哪些图形的面积?(长方形和正方形)

  怎么计算他们的面积?

  根据学生回答板书:

  正方形的面积=边长×边长

  长方形的面积=长×宽

  3、出示:你会计算它的面积吗?

  10 3

  4 4

  103 10

  想这样将上图通过剪拼成一个长方形来计算面积的方法,我们称为割补法。

  二、创设情景,引入新课。

  师:让天更蓝、水更清、地更绿,二十一世纪是以环保为主题的世界。我校正在开展创建“绿色学校”的活动,我们五(2)班的同学也积极投入到这项活动中,认养了校园里的一块地,要在这块地铺上草坪。同学们来到实地考察地形。猜猜看,他们想了解这块地的那些情况?(电脑演示)

  根据学生回答板书:三角形面积

  师:你会计算它的面积吗?你会计算那些图形的面积?

  师:能不能把三角形转化成学过的图形呢?

  二、动手操作,推导公式。

  1 请学生从老师提供的材料中,任意选取一个或两个三角形,以小组为单位,通过剪一剪、拼一拼、折一折,看能不能把三角形转化成我们已经学过的图形。

  根据学生汇报媒体演示:

  (1)两个直角三角形拼成一个长方形。

  (2)两个锐角三角形剪拼成一个长方形。

  (3)两个钝角三角形怎么拼呢?先把一个钝角三角形旋转一下,你发现什么?学生会发现两个钝角三角形能剪拼成一个长方形。

  2 师提问:

  (1)拼成的长方形面积与原来每个三角形的面积有什么关系?

  (2)长方形的长和宽分别是原三角形的那部分?

  媒体演示后板书:s长= 长× 宽

  s三=底 × 高÷2

  (3)三种情况的分析。

  钝角三角形、锐角三角形都要通过剪拼的方法转化成长方形,那么直角三角形可不可以也用剪拼的方法转化成长方形?

  学生讨论后交流,演示。(电脑演示)

  对,所有的三角形都能通过剪拼的方法转化成长方形,而直角三角形比较特殊,它不剪拼也能转化为长方形。

  3 师:除了用剪拼的方法将两个三角形转化成长方形外,还有没有其他方法呢?请大家先分组讨论、操作,再汇报。

  师:你是怎么转化的?拼成的图形与原三角形的.面积有什么关系?长方形的长与宽是原三角形的哪部分?

  媒体演示:

  (1)将一个直角三角形折成长方形。

  (2)将一个锐角三角形剪拼成长方形。

  都同样得出三角形的面积=底 × 高÷2。

  师:如果用母s表示三角形的面积,用字母a表示三角形的底,用字母h表示三角形的高,那么三角形的面积公式可以写作s= a×h ÷2。

  问:同学们,根据公式,要求三角形的面积需要知道哪些条件?

  (三角形的底和高)

  三、公式运用,巩固练习。

  1 通过同学们自己动手操作,我们已经找出了三角形面积的计算公式,现在我们来算一算课的一开始认养的那块土地面积好吗?

  媒体演示将土地标上底和高,请学生算出面积。

  2 再请大家看这一题。

  出示例1 一条红领巾的底边长100厘米,它的高33厘米,求红领巾的面积。

  指导学生的书写格式。

  学生尝试练习,再看书核对。

  3 计算下面三角形的面积。(单位:厘米)

  1212 20xx

  7

  14 8 10

  4.拓展练习。

  电脑演示:同学们,你们知道上海将在20xx年申办什么?世博会。我们的城市将以新的面貌迎接这次盛会,请你想办法把街道两旁的旧建筑换新颜。你有什么好办法?可以给旧建筑加顶。

  问:加上去的彩钢板是什么形状?要几块?电脑显示各种形状的彩钢板。供学生选择。(电脑显示三角形的底和高)学生再计算面积。算对了,彩钢板就贴在旧建筑顶上。

  四、总结。

  今天同学们通过自己动手,学会了什么?

  附板书:

  三角形的面积

  s正=a×a

  s长= 长× 宽

  s三= 底× 高÷2

  s = a×h ÷2

三角形的面积教学设计7

  教学内容:第75页及练习十八1-4题

  教学要求:

  1、理解三角形面积公式的推导过程,并能正确地运用公式计算三角形的面积。

  2、通过教学培养学生分析、推理能力和实际操作能力,发展学生的空间观念。

  3、在指导操作过程中,引导学生运用转化的方法探索规律。

  教学重点:三角形面积计算公式的推导。

  教学难点:理解公式中除以2的道理。

  教具:准备三种类型的三角形,每种2个完全一样,投影片若干。

  学具:完全相同的两个直角三角形、两个锐角三角形、两个钝角三角形。

  教学过程:

  一、复习铺垫

  1、提问:谁能说说长方形、平行四边形的面积计算公式是怎样的?

  2、(幻灯出示)口答:计算图形面积

  二、导入新课

  幻灯出示一个三角形

  提问:它是一个什么图形?

  它的底和高分别是多少?

  它的面积怎样算呢?板书课题:三角形面积的计算。

  三、讲授新课

  (一)、用数方格的方法计算三角形的面积。

  幻灯出示课本第75页上面的图,教师说明不够一格的都按半格算。让学生说出它们的底和高各是多少?面积是多少?

  得出用数方格的方法计算三角形的面积不准确,又很麻烦。

  质疑:怎样计算三角形的面积呢?

  (二)、通过操作总结三角形的面积计算公式。

  1、从直角三角形推导。

  我们能不能把三角形转化成已经学过的图形,再进行计算面积呢?

  (1)让学生动手拼,教师将学生拼出的图形一一展示出来。

  (2)这些图形中哪些图形的面积你们会算?

  (3)每个直角三角形的.面积与拼成的长方形和平行四边形的面积有什么关系?

  教师重述:每个直角三角形的面积是拼成的长方形或平行四边形面积的一半。

  2、从锐角三角形推导。

  (1)让学生试拼,可以相互讨论。

  (2)教师指导,突出旋转和平移。

  (3)每个锐角三角形的面积与拼成的平行四边形的面积有什么关系?

  教师强调:每个锐角三角形的面积是拼成的平行四边形面积的一半。

  3、从钝角三角形推导。

  (1)学生操作。

  (2)每个钝角三角形的面积与拼成的平行四边形的面积有什么关系?

  4、归纳总结规律。

  通过以上实验可以看出:两个完全一样的三角形,不论是直角三角形、锐角三角形、钝角三角形都可以拼成一个平行四边形。大家想想:

  (1)这个平行四边形的底与三角形的底是什么关系?高又怎么样?

  (2)这个平行四边形的面积和三角形的面积有什么关系?

  得出:三角形的面积=底×高÷2

  (3)如果用S表示三角形面积,用a和h分别表示三角形的底和高,那么三角形的面积计算公式用字母怎么表示呢?

  板书:S=ah÷2

  (三)、运用面积公式计算三角形的面积。

  1、出示数方格求面积图:谁能用公式计算方格图上的三个三角形的面积?三个三角形的面积为什么都相等?

  2、出示例题让学生试做。

  说一说计算三角形面积为什么要除以2?

  3、看书质疑。

  4、做一做书本第77页

  四、课堂小结

  提问:1、这节课我们主要研究什么?

  2、求三角形的面积有几种方法?哪一种求面积的方法更方便,更准确?

  3、要求三角形面积必须知道什么?怎样求?

  五、巩固练习

  练习十八1、3(1)

  六、课堂练习

三角形的面积教学设计8

  一、教学目标

  (一)知识与技能

  让学生经历探索三角形面积计算公式的过程,掌握三角形的面积计算方法,能解决相应的实际问题。

  (二)过程与方法

  通过操作、观察和比较,发展学生的空间观念,渗透转化思想,培养学生分析、综合、抽象概括和动手解决实际问题的能力。

  (三)情感态度和价值观

  让学生在探索活动中获得积极的情感体验,进一步培养学生学习数学的兴趣。

  二、教学重难点

  教学重点:探索并掌握三角形面积计算公式。

  教学难点:理解三角形面积计算公式的推导过程,体会转化的思想。

  三、教学准备

  多媒体课件,学具袋(每小组各有两个完全一样的直角三角形、锐角三角形、钝角三角形),一条红领巾。

  四、教学过程

  (一)复习铺垫,激趣引新

  1.复习旧知。

  (1)计算下面各图形的面积。(PPT课件演示)

  (2)创设情境。

  同学们,请大家看看自己胸前的红领巾,它是什么形状?如果要裁剪一条红领巾,你知道要用多大的红布吗?求所需红布的大小就是求这个三角形的什么?

  2.回顾引新。

  (1)回顾:还记得平行四边形的面积计算公式吗?它是怎样推导出来的?

  (2)引新:如果知道了三角形的面积计算公式,就能直接求出裁剪红领巾所需红布的大小了。今天这节课,我们就来研究三角形的面积。(板书课题:三角形的面积)

  (二)主动探索,推导公式

  1.操作转化。

  (1)提出问题:既然平行四边形能转化成长方形推导出面积计算公式,那三角形能不能也像这样,通过转化推导出计算面积的公式呢?

  (2)请同学们拿出准备的三角形,仿照我们推导平行四边形面积的方法,试着拼一拼,看能不能推导出三角形的面积公式。动手前,注意老师提出的这几个问题:

  你选择两个怎样的三角形拼图?能拼出什么图形?拼出的图形的面积你会算吗?拼出的图形与原来的三角形有什么联系?(屏幕出示)

  学生分组操作,教师巡视指导。

  (3)学生展示汇报。

  预设拼法一:用两个完全一样的锐角三角形拼成一个平行四边形。

  预设拼法二:用两个完全一样的直角三角形拼成一个长方形或平行四边形(以长方形为例)。

  预设拼法三:用两个完全一样的钝角三角形拼成一个平行四边形(以其中一种情况为例)。

  (4)想一想:你们拼的都不一样,但是,我们可以发现,只要是两个完全一样的三角形,一定能拼成什么图形?

  学生观察,发现:有的用两个完全一样的锐角三角形拼成了一个平行四边形,有的用两个完全一样的直角三角形拼成了一个长方形或平行四边形,还有的用两个完全一样的钝角三角形也拼成了一个平行四边形。虽然选取的三角形不一样,拼出的结果也不一样,但是,只要用两个完全一样的三角形就能拼成一个平行四边形。

  2.观察思考。

  (1)观察拼成的平行四边形和原来的三角形,你发现了什么?

  (2)学生独立思考后汇报:三角形的底和平行四边形的底相等,三角形的高和平行四边形的高相等,三角形的面积是平行四边形面积的一半。

  3.概括公式。

  (1)你能自己写出三角形的面积计算公式吗?(PPT课件演示)

  (2)总结公式。

  ①板书公式:三角形的面积=底×高÷2。

  ②用字母表示三角形面积计算公式。(PPT课件演示)

  (3)回顾与小结。

  ①我们已经知道三角形的面积等于底乘高除以2,回顾一下,它是怎样推导出来的?

  ②教师小结:当我们利用一个三角形无法将它转化成已学过图形的时候,我们选取了两个完全一样的三角形进行拼摆。不论是两个完全一样的锐角三角形、直角三角形还是钝角三角形,最后都能拼成一个平行四边形。通过观察思考发现,原三角形的底与拼成的`平行四边形的底相等,原三角形的高与拼成的平行四边形的高相等,原三角形的面积是拼成的平行四边形的面积的一半。今天的学习过程中,同学们依然采取把未知的三角形的面积转化成已知的平行四边形的面积来研究的方法,非常好!在今后的学习中,如果再碰到类似问题,希望能继续用这种方法使问题迎刃而解。

  4.除了刚才我们用的三角形面积公式推导方法外,请同学们再用剪拼的方法进行推导。

  (1)小组讨论:怎样剪拼可以推导出三角形的面积公式?

  (2)交流汇报(请学生展示剪拼过程)

  平行四边形的面积=底×高

  ↓↓

  (三角形的面积)(三角形的底)(三角形高的一半)

  三角形的面积=底×高÷2

  (三)巩固运用,解决问题

  1.请同学们比较一下,两个不一样的三角形能不能拼成一个平行四边形?为什么?

  2.讨论:谁说的对

  叔叔:两个三角形能拼成一个平行四边形

  小明:三角形的面积是平行四边形面积的一半

  小玲:两个面积相等的三角形一定能拼成一个平行四边形

  小红:两个完全一样的三角形能拼成一个平行四边形

  3.填空

  用两个完全一样的三角形可以拼成一个(),平行四边形的高等于()的高,平行四边形的底等于三角形的()。三角形的面积等于拼成的平行四边形面积的(),所以三角形的面积就等于()×()÷(),用字母表示是()

三角形的面积教学设计9

  教材分析三角形的面积计算直接要求学生将三角形转化为已学过的图形推导出面积计算公式。

  学情分析是在学生掌握图形的特征和长方形、正方形、平行四边形面积的计算的基础上学习的。

  教学目标

  1、在理解的基础上掌握三角形的面积计算公式,能正确计算三角形的面积。

  2、通过操作、观察和比较,使学生认识转化的思想方法在研究三角形面积时的运用,发展学生的空间观念。

  3、培养学生的分析、综合、抽象、概括能力和运用转化的方法解决实际问题的能力。

  教学重点

  在理解的基础上掌握三角形的面积计算公式,能正确计算三角形的面积。

  教学难点

  培养学生分析、综合、抽象、概括和运用转化的方法解决实际问题的能力。

  教学准备教师:红领巾,直角三角形、锐角三角形和钝角三角形硬纸片各一对。

  学生:直角三角形、锐角三角形和钝角三角形硬纸片各一对,尺子,练习本。

  教学过程

  一、复习准备:

  1、教师:同学们,前面我们已经学了哪些平面图形的面积计算公式?

  谁能说说长方形和平行四边形的面积计算公式是怎样的?随着学生的回答板书:

  长方形的面积=长×宽。

  平行四边形的面积=底×高。

  2、出示红领巾。

  (1)教师:这条红领巾是什么图形,它的面积是多少?你能猜一猜吗?

  (2)教师:同学们猜了那么多答案,哪个是正确的'呢?我们需要计算后才能作出正确的判断。今天这节课,我们就一起来研究三角形面积的计算。板书课题:三角形面积的计算。

  二、合作探究:

  1、出示直角三角形、锐角三角形和钝角三角形纸片,提问:这3个三角形分别是什么三角形?

  2、探究三角形面积计算公式。

  教师:我们学习过哪些求面积的方法?(数方格和转化的方法)

  教师:同学们,那就用你喜欢的方法推导三角形面积公式。引导学生运用所学的方法探究三角形面积计算公式,并组织学生分组合作。

  ①如果是用数方格的方法,那就在方格纸上进行计算。(教师巡视,对个别学生进行指导)

  ②如果是用拼摆转化的方法,那请同学们拿出老师为你们准备的三角形进行计算。组织学生开展操作活动。(教师巡视,对个别学生进行指导)

  三、探讨交流。

  1、组织全班学生进行交流,说明推导公式的过程。

  2、让数方格小组说明推导的公式及过程。(我们先计算出三个图形的面积,再分别量出它们的底和高,发现它们的面积都可以用底×高÷2表示。所以我们小组觉得三角形的面积公式应该是:底×高÷2。

  3、让转化小组说明推导的公式和过程。(我们将两个完全一样的锐角三角形拼成一个平行四边形,其中三角形的底和高分别是平行四边形的底和高,因为平行四边形的面积公式是底×高,而这个平行四边形是由两个相同的三角形拼成,所以三角形的面积公式是:底×高÷2。钝角三角形和直角三角形的面积公式也一样。

  4、在讲台上演示用两个相同三角形推导的过程,让学生进一步理解上述同学和推导思路,看清楚转化的过程。

  5、引导转化小组学生总结三角形面积的计算公式,同步板书:

  两个相同的三角形=一个平行四边形。

  平行四边形的面积公式=底×高。

  三角形的面积公式=底×高÷2。

  用字母表示公式:s=ah÷2。

  6、教学例题2。

  四、巩固练习。

  (1)解答练习题"做一做"。之后教师指定学生回答,并集体订正。

  (2)回顾:这节课我们共同研究了什么?怎样求三角形的面积?三角形的面积计算公式是怎样推导出来的?

三角形的面积教学设计10

  教学内容

  苏教版九年义务教育六年制小学数学第八册P47—49三角形的面积,“练一练”及练习十第1—3题

  教学目标:

  1、 理解和掌握三角形的面积计算公式。

  2、 通过操作、观察、比较,进一步发展空间观念,提高分析、综合、抽象、概括和运用转化的方法解决实际问题的能力。

  教学重、难点

  理解和掌握怎样用两个完全一样的三角形转化成平行四边形,推导出三角形的面积计算公式。

  教具学具准备:

  1、 若干个完全一样的按比例放大的锐角三角形、直角三角形、钝角三角形。一套多媒体课件。

  2、 每个学生准备一个长方形、两个平行四边形,一把剪刀。

  一、导入课题:

  1、师:同学们,今天我们要学习三角形的面积,板书:三角形的面积),看到课题,你想知道什么?

  [可能出现:a、三角形面积计算公式是什么?b、三角形面积是怎样推导出来的?c、学三角形的面积有什么作用?]

  2、解决方案:

  师:要想知道三角形的面积怎样求,你想用什么方法来研究?你是怎么想到的?

  (前面我们刚学过平行四边形面积的推导,是把平行四边形通过分割、平移、拼补转化成长方形研究的,所以我想到了转化的方法。板书:转化)

  师:今天这节课让老师陪着大家运用转化的方法研究三角形的面积。

  [评析:谈话式导入,学生看课题提出自己想知道的问题,参与了课堂学习目标的制定。课堂导入找准教学起点,沟通了新旧知识的联系,让学生明白本课的学习也是运用转化的方法进行研究,激发了学生的学习兴趣,调动了学生的情感,为新知的学习打下了基础。]

  二、新授

  (一) 实验一:剪

  1、师:下面让我们做几个实验,好不好?

  (学生拿出准备好的一个长方形,两个平行四边形。平行四边形上画好底和高。)

  2、(1)师:请大家拿出准备好的三个图形,平放在桌上,用剪刀沿虚线把它们剪开,剪开后一对一对的放在一起。(标上1、2、3号)

  (2)反馈。师:你沿虚线把平行四边形剪开,得到了什么图形?(让学生把得到的两个三角形举给大家看。)师:其他的两个平行四边形剪开后能得到两个三角形吗?

  (3)师:通过刚才的实验我们知道一个平行四边形可以分成两个三角形,这两个三角形大小、形状怎样?你怎么知道的?(学生演示重合的过程)

  师:重合了,在数学上叫“完全一样”(板书:两个完全一样)

  师:现在你能用“完全一样”说一说我们剪到的三角形吗?(学生说1号是两个完全一样的三角形,2号、3号是两个完全一样的三角形)

  学生演示重合过程,课件演示剪、重合的过程。

  师:谁能说一说根据刚才的实验,你想到了什么?

  小结并出现字幕:一个平行四边形可以分成两个完全一样的.三角形。

  (4)师:这两个三角形与原来平行四边形面积相等,(课件演示两个完全一样的三角形拼成平行四边形的过程)其中一个三角形的面积和原来平行四边形的面积有什么关系?(课件闪动演示,学生回答,出现字幕:其中一个三角形的面积等于这个平行四边形面积的一半)

  师:谁能完整地说一说,通过刚才的实验,你得出什么结论?看字幕说:一个平行四边形可以分成两个完全一样的三角形。其中一个三角形的面积等于这个平行四边形面积的一半。

  说一说1号、2号、3号各是什么三角形?(板书:锐角三角形、直角三角形、钝角三角形)

  [评析:学生自主探索,动手实践。通过剪一剪、比一比、议一议,使学生多种感官积极参加学习活动,理解“一个平行四边形可以剪成两个完全一样的三角形,其中一个三角形的面积等于这个平行四边形面积的一半。”为学习三角形的面积指明了思维的方向。]

三角形的面积教学设计11

  教学内容:

  人教版五年级上册第五单元第84~87页内容

  教学目标:

  1、探索并掌握三角形的面积公式,能正确计算三角形的面积,并能应用公式解决简单的实际问题。

  2、使学生经历操作、观察、讨论、归纳等数学活动,进一步体会转化思想的价值,发展学生的空间观念和初步的推理能力。

  3、让学生在探索活动中获得积极的情感体验,进一步培养学生学习数学的兴趣。

  教学重点:

  探索并掌握三角形的面积公式,能正确计算三角形的面积。

  教学难点:

  理解三角形面积公式的推导过程。

  教学准备:

  多媒体课件、三角形学具。

  教学过程:

  一、创设情境,引出课题

  课件出示一个平行四边形。

  师:这是什么图形,你会计算它的面积吗?说一说怎么算。

  根据学生的回答,板书:平行四边形的面积=底×高

  师:你能把这个平行四边形分成两个完全一样的三角形吗?该怎么分?

  学情预设:学生一般有以下两种分法:

  师:现在请你拿出自己准备好的平行四边形,我们来验证一下。用刚才的方法画一画、剪一剪、比一比,看看这两个三角形是否完全一样?

  学情预设:学生动手操作,教师巡视指导,发现:剪下来的两个三角形是完全一样的。

  师:假如这个平行四边形的面积为40平方厘米,那么其中一个三角形的面积是多少?(20平方厘米)

  师:为什么?(剪下的两个三角形完全一样,就说明三角形的面积是平行四边形的一半)

  师:刚才我们借助已知的平行四边形的面积,知道了三角形的面积。如果我们从桌子上任意取一个三角形,(师拿起任意一个三角形模型)这个三角形的面积怎样求呢?这就是我们今天要学习研究的内容。

  【设计意图】:

  从不会计算面积的图形中揭示课题,激发学生的探究兴趣。

  板书课题:三角形的面积

  二、自主探索,得出公式

  1、动手实验。

  师:同学们,老师已经给每组同学的学具袋中准备了三角形学具,请你们选择合适的三角形摆一摆,推导三角形的面积计算公式,比一比,哪一组想到的方法最多。

  学情预设:学生动手实验,教师巡视指导,有前面的例子做铺垫,学生自然而然会想到用两个完全一样的三角形来拼。拼出的`图形有三角形、长方形和平行四边形。选出拼成长方形和平行四边形,这两种是已经会计算面积的图形。把三角形转化成已学过的平行四边形、长方形或正方形来推导三角形的面积计算公式。

  【设计意图】:

  给学生留出足够的空间,发挥学生的主观能动性和合作精神,自主探索三角形的面积的公式。

  2、学生代表上台演示汇报

  师:你是如何推导出三角形的面积公式的?谁来给我们演示?

  演示一:把两个完全一样的三角形拼成平行四边形。(如下图)

  师:观察这些平行四边形,它们有什么共同特点?我们把拼成的平行四边形和原来的三角形作比较,你能发现平行四边形的底和高与三角形的底和高有什么关系吗?那么三角形的面积可以怎么计算呢?

  根据学生的回答,教师板书如下:

  三角形的面积=平行四边形的面积÷2=底×高÷2

  展示二:把两个完全一样的直角三角形拼成长方形或正方形。(如下图)

  师:观察图形,我们把拼成的长方形或正方形与原来的三角形作比较,你能发现它们之间的关系吗?请你根据你拼成的图形,推导出三角形的面积计算公式。

  根据学生的回答,教师板书如下:

  三角形的面积=长方形的面积÷2=长×宽÷2=底×高÷2

  师:同学们,如果用a表示三角形的底,h表示三角形的高,s表示三角形的面积,三角形面积的字母公式是什么?

  三、学以致用,解决问题。

  师:同学们,我们已经推导出了三角形面积计算公式,现在我们就用三角形的面积计算公式解决一些实际问题,好吗?(好)

  1、计算生活中的三角形的面积

  (1)计算红领巾的面积

  师:老师这里有一条红领巾,(展示实物)如果想求它的面积有多少?需要知道什么条件?(需要知道三角形的底和高)

  (课件出示例2)

  红领巾的底是100cm,高33cm,它的面积是多少平方厘米?

  师:请同学们算一算。

  (学生练习后讲评订正)

  (2)计算三角形标志牌的面积

  师:我们经常见到类似以下标志的标志牌(课件出示如下图),你知道这个标志牌的面积吗?谁口算一下。(4×3÷2=6(平方分米))

  师:都是这样做的吗?为什么不用3.2×3÷2呢?

  (因为3.2分米不是3分米对应的底。)

  师:如果与3.2分米对应的高是3.75分米(课件出示)还可以怎样列式?

  (3.2×3.75÷2)

  师:通过这道题的解答,你明白了什么?

  师:对啊,我们要计算三角形的面积时必须找准相对应的底和高,才利用三角形面积的计算公式来计算。

  (3)认识道路交通警示标志。

  师:请看屏幕。(多媒体出示)

  师:你们认识这些交通警告标志吗?

  (学生回答后,老师边小结,课件边出示各标志的含义)

  师:同学们,我们示范小学校门口到邮政局这段路,在放学时经常出现交通混乱,为了改变这种状况,交警大队准备用铁皮制作其中两块这样警示牌,你能算出需要多少铁皮吗?(课件同时出示标有底是9分米,高7.8分米的数据的图形)

  (学生练习后讲评订正,订正时主要关注”用简便方法解答”的小结。)

  (4)画面积相等的三角形。

  师:看到同学们这么积极,小精灵也给大家带来了问题,请大家看屏幕(课件出示)

  师:上图中哪两个三角形的面积相等?你还能画出和它们面积相等的三角形吗?

  (学生打开书87页,在书中画一画,完成第6题)

  师:你画出了几个面积相等的三角形?如果给你足够的时间你能画出多少个这样的三角形?(无数个)

  师:通过画这样的三角形,你发现了什么?

  生:三角形的面积与底和高有关,与形状无关。

  【设计意图】:

  通过分层次的解决实际问题的练习,既巩固了学生对三角形面积计算公式的理解应用,又使学生感受到三角形面积公式的变形应用,同时对学生进行交通安全教育。〕

  四、课堂小结

  师:本节课你学到了什么新知识?你觉得计算三角形面积时应注意什么?

  (学生汇报:1、三角形的底和高必须是相对应的一组。2、别忘了除以2.)

  五、布置作业:

  课本P86--87页第2、4、5题

三角形的面积教学设计12

  教学内容:

  《探索活动(二)三角形面积》

  教学目标:

  在实际问题情境中认识三角形面积必要性,在自主探究中体会有计划、有目的的选择适当的探究方法,锻炼学生动手操作的能力,进一步感知转化的数学思想和方法,学会用数学语言与他人交流,体验数学公式建立的过程,发展观察对比的能力、归纳概括能力及空间想象力。能正确地利用三角形面积公式计算,解决实际问题。

  教学重点:

  三角形面积公式的建立;利用分割与旋转进行图形转化

  教学难点:

  三家形面积公式的概括;利用分割与旋转进行图形转化

  教法设计:

  教学媒体的准备:

  学具类:三个三角形(两个完全相同,一个不同)一个平行四边形;剪刀。

  教具类:课件,与学具相应的教具。媒体:笔记本电脑、实物投影仪。

  教学过程设计:

  一、温故孕新,提出问题

  ⒈教师谈话:同学们,到现在我们已经学过哪些图形面积的计算了?你能说一说它们的面积计算公式吗?

  学生口述,教师利用课件出示长方形、正方形、平行四边形图形及公式

  教师提问:谁能说一说平行四边形面积计算公式的推导过程?

  学生口述,教师利用课件再现平行四边形面积计算公式的推导过程。

  (设计意图:通过再现平行四边形面积公式推导过程,重温将“未知”转化为“已知”的过程,为进一步探究三角形面积计算公式做好思维上的准备)

  ⒉教师利用课件出示教材p25主题图

  教师引导审题:什么形状,给了什么条件,要求什么问题。学生观察后口述。

  (设计意图:在实际问题中使学生认识三角形面积计算的必要性,激发学生学习的内驱力,为学生下面积极参与到探究过程中来做好心理上的准备)

  ⒊教师提问:你认为今天我们应该重点研究是什么?学生口述,教师板书:

  三角形面积

  教师谈话:今天这节课我们将通过“动手操作、观察对比”推导出三角形面积的计算公式。

  (设计意图:学生在教师的指导下自我提出学习的内容,教师明确的只出击将采用的方法和学习的目标,使学生做到思维定向。)

  二、观察对比,设想转化

  ⒈教师提问:你能用什么办法得到三角形面积呢?学生思考口述,

  预计学生可能提出以下两种方案

  ⑴数方格的办法,(打开教材p25,数出三角形的面积) ⑵将三角形转化为已经学过的图形(平行四边形)

  ⒉教师利用电脑课件再出示一个平行四边形(如右图),

  引导学生与三角形进行观察对比,

  思考:“怎样将三角形转化为平行四边形”,学生独立思考,分组交流,口述自己的或小组的意见。

  (设计意图:将三角形与平行四边形进行对比,思考、交流转化的预想其目的都是培养学生有目的、有计划的进行探究活动,减少探究活动的盲目性和随意性,养成良好的思维习惯,发展学生空间想象的能力。)

  三、动手操作,体验转化

  ⒈教师谈话:下面同学们可以按照自己的想法利用自己手中的学具进行转化,并思考一下的问题:(教师利用课件出示思考题)

  在转化过程中的三角形和平行四边形有什么关系?

  教师引导学生分析思考的'含义

  ⒉学生按照自己的想法动手实践,根据思考题思考,在小组内交流,教师巡视,并作适当点拨。

  ⒊学生汇报探究的成果

  预计有以下几种情况:

  ⑴拼:

  ①用两个完全相同的三角形拼成一个平行四边形

  教师提问:这两个三角形有什么关系?完全相同是什么意思?如果不完全相同的两个三角形呢?

  完全相同——形状,面积都相等(板书)

  总结:当三角形和平行四边形等底等高时,三角形的面积是平行四边形面积的一半。(板书)

  ②通过割补把一个三角形拼成平行四边形

  教师提问:为什么选择两条边的中点连线进行分割?

  (原因:平行四边形的对边相等)

  总结:当三角形和平行四边形等底等积时,三角形的高是平行四边形高的2倍。

  教师利用电脑演示揭示实质:当三角形和平行四边形等底等高时,三角形的面积是平行四边形面积的一半。(板书)

  ⑵剪:将一个平行四边形剪成两个三角形

  总结:当三角形和平行四边形等底等高时,三角形的面积是平行四边形面积的一半。(板书)

  ⒋教师提问:通过刚才一系列的活动,我们得到了一个怎样的结论?

  学生思考,口述,

  总结:当三角形和平行四边形等底等高时,三角形的面积是平行四边形面积的一半。(或:三角形面积是与它等底等高的平行四边形面积的一半。)

  (设计意图:通过动手、交流、汇报、归纳等教学活动,使学生在活动中“做”数学,体验知识形成的过程和自主获取新知的过程,积累数学实验的经验,发展分析、归纳等思维能力、空间想象能力、以及利用数学语言与他人交流的能力。)

  四、建立公式,实践应用

  ⒈归纳公式

  教师谈话:请同学们打开教材p25,学生阅读教材。

  教师谈话:根据刚才得出的结论,请大家思考三角形面积应该怎样计算呢?在小组里说一说你的想法,然后把结论填在教材上

  三角形面积=___________________________

  如果用s表示三角形的面积,用a和h分别表示三角形的底和高,那么三角形的面积公式可以写成:

  s=_______________

  学生思考,交流,填写,口述,教师板书

  三角形面积=底×高÷2;s=ah÷2

  ⒉剖析公式:教师提问:①计算三角形面积必须知道什么条件?②底乘以高等到的是什么?③为什么除以2?

  ⒊回归问题:

  教师谈话:现在我们能求这个三角形的面积了吗?

  学生重新审题,独立完成,口述,教师板书

  4×3÷2=6(cm2);答:它的面积6cm2。

  ⒋巩固练习:完成教材p26试一试。

  学生独立完成,板演,教师订正

  (设计意图:以教材为引领,完成自主探究的学习过程,经历数学建模。)

  作业设计:

  ⒈利用学具摆一摆、说一说三角形面积推倒的过程,复述重要的结论。

  ⒉完成教材p26练一练第1题。

  板书设计:(略)

三角形的面积教学设计13

  教学内容:

  人教版义务教育课程标准实验教科书五年级上册第84—86页。

  教材分析:

  三角形面积的计算方法是小学阶段学习几何知识的重要内容,也是学生今后学习的重要基础、《数学课程标准》中明确指出:利用方格纸或割补等方法,探索并掌握三角形,平行四边形和梯形的面积公式、学生在学习三角形面积的计算方法之前,已经亲身经历了平行四边形面积计算公式的推导过程,当学生面临三角形面积计算公式的推导过程时,可以借鉴前面"转化"的思想,且为今后逐渐形成较强的探索能力打下较为扎实的基础、

  教学目标:

  1、知识与技能:使学生在探索活动中深刻体验和感悟三角形面积计算公式的推导过程

  2.过程与方法:使学生经历操作、观察、讨论、归纳等数学活动,进一步体会转化方法的价值,发展学生的空间观念和初步的推理能力。

  3.情感、态度与价值观:让学生在探索活动中获得积极的情感体验,进一步培养学生学习数学的兴趣。

  教学重点:探索并掌握三角形面积计算公式,能正确计算三角形的面积。

  教学难点:

  三角形面积公式的探索过程。

  教具准备:

  课件、平行四边形纸片、两个完全一样的三角形各三组、剪刀等。

  学具准备:

  每个小组至少准备完全一样的直角三角形、锐角三角形、钝角三角形各两个,一个平行四边形,剪刀。

  教学过程

  一、复习旧知,导入新课。

  1、我们学过求哪些图形的面积,计算公式是什么?

  2、我们学校内有一平行四边形的花坛,底是5米,高是3米,学校领导要把这个花坛平均分成两份,分别种上不同颜色的花,该怎样分?每一块的面积是多少?请同学设计一下。

  3、同学们,学校要为学校开学典礼准备30条红领巾,大队辅导员想请大家帮忙,算一算,需要多少布料?你们愿意吗?该怎样来计算呢?

  师:是的,要先计算一条红领巾的面积,那么红领巾是什么形状的?你会计算它的面积吗?今天我们就来学习计算三角形的面积。板书:三角形的面积。

  二、动手操作,探求新知。

  1、 猜一猜。找关系

  师:1、同学们,长方形的面积跟它的什么有关系?平行四边形的面积跟它的什么有关系?

  生:和它的底和高有关。

  2、那么,猜一猜,三角形的面积可能跟它的什么有关系呢?(学生可能说边、底、高)那么怎样来验证我们的判断呢?

  2、 想一想。找关系

  师:想一想,我们在推导平行四边形的面积时,用的是什么方法?那么,可不可以也用转化法把三角形转化成我们会求面积的图形呢?

  3、 拼一拼,摆一摆,比一比。找关系

  师:请同学们拿出准备好的三角形,按照你的'想法,和小组内同学一起拼一拼,摆一摆,折一折看可以把它转化成哪些我们会求面积的图形。

  学生小组合作,拼摆图形。教师巡视,帮助学困生拼摆。

  汇报。可能摆出正方形,长方形,平行四边形,

  思考,这些图形有什么共同点?(都是平行四边形。)现在,你又有什么发现?

  归纳:两个完全相同的三角形,可以拼出一个平行四边形。

  师:那么,我们拼出的平行四边形、跟所用的三角形有没有关系呢?有什么关系呢?

  引导学生答出,平行四边形的面积是三角形面积的2倍。板书:三角形的面积=平行四边形的面积÷2,那么,还有没有其它的关系呢?

  4、 画一画,算一算。找关系,得结论。

  师:请同学们画出平行四边形的一条高,你发现了什么?

  生:平行四边形的高也是三角形的高,底也是三角形的底。

  师:那么,我们刚刚得出的结论还可以怎样写?

  三角形的面积=底×高÷2

  用字母表示三角形的面积。

  5、 应用公式,解决问题。

  现在我们再来解决大队辅导员老师的问题吧。学生可能会束手无措,面面相觑于是,教师趁机疑惑不解地问:你们怎么还不解决问题啊?让学生自己说出,需要红领巾的底和高。

  教师出示完整题目:一条红领巾的底是100厘米,高是33厘米,做30条这样的红领巾需要多少布料?

  学生独立计算,集体订正。

  三、练习巩固。

  1、 独立完成85页做一做。

  2、 完成86页练习的1、题。

  3、 完成86页练习的3题。

  4、判断下列说法是否正确。

  (1)三角形面积是平行四边形面积的一半。( )

  (2)一个三角形面积为20平方米,与它等底等高平行四边形面积是40平方米。( )

  (3)一个三角形的底和高是4厘米,它的面积就是16平方厘米。( )

  (4)等底等高的两个三角形,面积一定相等。( )

  (5)两个三角形一定可以拼成一个平行四边形。( )

  5、求右图三角形面积的正确算式是( )

  ①3×2÷2 ②6×2÷2

  ③6×3÷2 ④6×4÷2

  6、 学校准备在校门出口处两旁各建一块三角形交通警示标志牌,底是8分米,高是7分米,请帮忙计算需要多大面积的材料。(引导学生思考“两旁”的意思)。

  四、拓展提高:

  1、这节课,你有什么收获?还有那些不懂的地方?

  2、如果只用一个三角形,你能通过剪,拼等方法推出三角形公式吗?

  五、板书设计:

  三角形的面积

  三角形的面积=平行四边形的面积÷2

  三角形的面积=底×高÷2

  S=ah÷2

三角形的面积教学设计14

  教学目标:

  1、知识与技能:

  (1)探索并掌握三角形面积公式,能正确计算三角形的面积,并能应用公式解决简单的实际问题、

  (2)培养学生应用已有知识解决新问题的能力、

  2、过程与方法:使学生经历操作,观察,讨论,归纳等数学活动,进一步体会转化方法的价值,发展学生的空间观念和初步的推理能力、

  3、情感,态度与价值观:让学生在探索活动中获得积极的情感体验,进一步培养学生学习数学的兴趣、

  教学重点:

  探索并掌握三角形面积计算公式,能正确计算三角形的面积、

  教学难点:

  三角形面积公式的探索过程、

  教学关键:

  让学生经历操作,合作交流,归纳发现和抽象公式的过程、

  教具准备:

  课件,平行四边形纸片,两个完全一样的三角形各三组,剪刀等、

  学具准备:

  每个小组至少准备完全一样的直角三角形,锐角三角形,钝角三角形各两个,一个平行四边形,剪刀、

  教学过程:

  创设情境,揭示课题

  师:我们学校一年级有一批小朋友加入少先队组织,学校做一批红领巾,要我们帮忙算算要用多少布,同学们有没有信心帮学校解决这个问题

  (屏幕出示红领巾图)

  师:同学们,红领巾是什么形状的(三角形)你会算三角形的面积吗这节课我们一起研究,探索这个问题、(板书:三角形面积的计算)

  [设计意图:利用学生熟悉的红领巾实物,以及帮学校计算要用多少布这样的事例,激起了学生想知道怎样去求三角形面积的欲望,从而将"教"的目标转化为学生"学"的目标、]

  二,探索交流,归纳新知

  1、寻找思路:(出示一个平行四边形)

  师:(1)平行四边形面积怎样计算(板书:平行四边形面积=底×高)

  (2)观察:沿平行四边形对角线剪开成两个三角形、

  师:两个三角形的形状,大小有什么关系(完全一样)

  三角形面积与原平行四边形的面积有什么关系

  [设计意图:这一剪多问,学生在观察的基础上通过与平行四边形及面积的比较,直觉感知三角形面积计算规律,增强了整体意识,同时为下面的进一步探究,诱发了心理动机]

  师:你想用什么办法探索三角形面积的计算方法

  (指名回答,学生可能提供许多思路,只要说的合理,教师都应给予肯定,评价鼓励、)

  师:上节课,我们把平行四边形转化成长方形来探索平行四边形面积的计算公式的大家猜一猜:能不能把三角形也转化成已学过的图形来求面积呢

  (屏幕出示课本84页主题图让学生观察,引发思考)

  接着出示思考题:

  将三角形转化成学过的什么图形

  每个三角形与转化后的图形有什么关系

  [设计意图:学生由于有平行四边形面积公式

  的推导经验,必然会产生:能不能把三角形也转化

  成已学过的图形来求它的面积呢从而让学生自己

  找到新旧知识间的联系,使旧知识成为新知识的铺垫、]

  2、分组实验,合作学习(音乐)

  (1)提出操作和探究要求、

  让学生拿出课前准备的三种类型三角形(各两个)小组合作动手拼一拼,摆一摆或剪拼、

  屏幕出示讨论提纲:①用两个完全一样的三角形摆拼,能拼出什么图形

  ②拼出的图形与原来三角形有什么联系

  (2)学生以小组为单位进行操作和讨论、

  [设计意图:这里,根据学生"学"的需要设计了一个合作学习的程序,让学生分组实验,合作学习,为学生创设了一个自己解疑释惑的机会、]

  教师巡视,及时了解学生在操作和讨论中存在的问题,并针对性地进行指导学困生:你是怎样拼的能说一说你的拼法吗(若学困生含糊的,动画显示一个作好高的三角形,移出一个与它同样大小的三角形,再把这个三角形旋转,移动,和下一个三角形拼成一个平行四边形、如图,让学困生模仿练习)

  [设计意图:不仅使学生找到了新旧知识的连接点与转化方式,而且使学生正确掌握操作方法,形成操作技能]

  (3)展示学生的剪拼过程,交流汇报、(音乐停)

  ①各小组汇报实验情况、(让学生将转化后的图形贴在黑板上,再选择有代表性的情况汇报)

  可能出现以下情况:(用两个完全一样的三角形摆拼)

  (两锐角三角形)(两钝角三角形)(两直角三角形)(两等腰直角三角形)

  ②课件演示:用旋转平移的.方法将三角形转化成各种已学过的图形、

  师:通过实验,你们发现了什么

  引导学生得出:只要是两个完全一样的三角形都能拼成一个平行四边形)

  师:谁能说说,每个三角形的面积与拼成的平行四边形的面积有什么关系

  生:拼成的平行四边形是三角形面积的二倍、

  生:每个三角形的面积是拼成的平行四边形的面积的一半、(评价,肯定)

  [设计意图:在大量感知的基础上,通过自主学习,再通过课件的演示使同学们更具体,清晰地弄清了将两个完全一样的三角形转化成平行四边形后,它们间到底有什么关系、同时又渗透了转化的数学思想方法,突破了教学难点,提高了课堂教学效率、]

  3、归纳公式

  (1)讨论:(屏幕显示提纲)

  a,三角形的底和高与平行四边形的底和高有什么关系

  b,怎样求三角形的面积

  c,你能根据实验结果,写出三角形的面积计算公式吗

  [由图形直观应用,进行观察,推理,加深对三角形的面积计算公式的理解、]

  (2)归纳交流推导过程,说出字母公式、

  根据学生讨论,汇报,教师进行如下板书:

  因为:三角形面积=拼成的平行四边形面积÷2

  所以:三角形面积=底×高÷2

  师:为什么要除以2

  生:……

  师:如果用s表示三角形面积,用α和h分别表示三角形的底和高,那么你能用字母写出三角形的面积公式吗

  结合学生回答,教师板书s=ah÷2

  [设计意图:当将三角形转化成已学过的平行四边形,找出它们间的关系,使学生感知了三角形面积的计算后,讨论:"三角形面积的计算公式是怎样的"从而启发学生依靠自己的思维去抽象出事物的本质属性,得出计算公式,培养学生的抽象概括能力、]

  4、看书质疑、指名讲述课本中是怎样得出三角形面积公式的

  (养成看书的良好习惯)

  师:我们刚才是从两个完全一样的直角三角形,锐角三角形和钝角三角形与拼成的平行四边形关系中得出求三角形面积的公式的你们还能用别的方法去推导三角形的面积公式吗

  如果有学生想到别的方法,如剪拼的方法可以让学生边讲边演示,只要合理的老师都要给予肯定、

  老师课前做好下面课件帮助学生理解

  方法一:期量子论方法二:方法三:

  得出:三角形的面积=底×(高÷2)=底×高÷2(方法一)

  三角形的面积=底×(高÷2)=底×高÷2(方法二)

  三角形的面积=(底÷2)×高=底×高÷2(方法三)

  师:同学们真了不起,想到那么多的方法推导出三角形的面积公式、得到了这个公式,我们就可以求出任何三角形的面积、用这个公式计算三角形的面积(指板书),需要知道什么条件(反扣公式,加深理解)

  4,进行爱国教育

  师:其实早在20xx年前,我国伟大的劳动人民就开始会用这个公式来计算三角形土地的面积了、请同学们课后把85页的"你知道吗"看一看、

  三,应用新知,解决问题

  师:有了公式,下面我们可以帮学校解决问题了、(回应引入问题)

  1,(屏幕显示)出示85页例1:

  学生独立完成(一生板演),集体订正、

  师:你认为计算三角形的面积,什么地方容易出错(强调"÷2"这一关键环节)

  2,独立完成p85做一做、

  完成后交流,讲评、

  四,深化理解,应用拓展

  1、课本86页的练习第1题、课件出示下图:

  师:你认识这些道路交通警示标志吗一块标志牌的面积大约是多少平方分米

  (教育学生要遵守交通规则,注意交通安全,接着让学生口头列算式,不用计算、)

  2,课本86页第2题:你能想办法计算出每个三角形的面积吗、

  师:要计算出每个三角形的面积,需要什么数据要怎么做

  先让学生想,小组交流,再汇报,最后学生动手操作计算,评讲、

  3,课本86页第3题:已知一个三角形的面积和底

  (如右图),求高、

  师:求三角形的面积我们会算了,如果已知三角形的面积求三角形的高你会算吗

  (生讨论汇报,再计算,反馈、)

  4、想一想,下面说法对不对为什么

  (1)三角形面积是平行四边形面积的一半、( )

  (2)一个三角形面积为20平方米,与它等底等高平行四边形面积是40平

  方米、( )

  (3)一个三角形的底和高是4厘米,它的面积就是16平方厘米、( )

  (4)等底等高的两个三角形,面积一定相等、 ( )

  (5)两个三角形一定可以拼成一个平行四边形、 ( )

  5,求右图三角形面积的正确算式是( )

  ①3×2÷2 ②6×2÷2

  ③6×3÷2 ④6×4÷2

  6、做课本86页第4题(然后汇报,评讲、)

  要在公路中间的一块三角形空地(见下图)上种草坪、1㎡草坪的价格是12元、种这片草坪需要多少元

  [设计意图:练习分三个层次设计,第一层基本练习,旨在巩固,熟练公式;第二层设计判断练习,学生在思考中,从正,反两方面强化对求积公式的理解;第三个层次,主要通过实际问题的解决,让学生感知生活化的数学,增强学生用数学的意识,并通过变题练习,训练学生思维的灵活性与逆向思维能力,同时深化对三角形求积公式的认识、]

  五,回顾总结,深化提高:

  1,师:这节课探究了什么是怎样探究的呢(渗透数学方法)

  (屏幕显示)让学生说一说图意:

  师:对!今天我们分小组通过动手操作,相互讨论,交流,用摆拼(还可以用折叠,割补)等方法将三角形转化成学过的图形推导出了三角形面积的计算公式,这种"转化"的数学思想方法能帮助我们找到探究问题的方向,相信同学们今后能应用这一数学方法探究和解决更多的数学问题、

  [设计意图:这两问引导学生从学习内容及学习方法对本课作出总结,引导学生回顾和反思自己获取知识的思路和过程,归纳提炼学习方法,让学生在今后的学习中能应用这些方法去探究问题,自己解决更多的数学问题,培养学生勇于探究,善于探究的精神、]

  六,课外作业:p87—5,6,7

  板书设计

  因为:平行四边形的面积=底×高,例1… …

  三角形面积=拼成的平行四边形面积÷2 s=ah÷2

  所以三角形面积=底×高÷2 =100×33÷2

  s=ah÷2 =1650(cm )

  旧知

  求平行四边形面积

  平移

  旋转180°

  平行四边形面积=底×高

  三角形面积=底×高÷2

  求三角形面积

  转化

  还原

  解决

三角形的面积教学设计15

  【教学内容】:

  人教版五年级上册第六单元第91~92页内容

  【教学目标】:

  1、探索并掌握三角形的面积公式,能正确计算三角形的面积,并能应用公式解决简单的实际问题。

  2、使学生经历操作、观察、讨论、归纳等数学活动,进一步体会转化方法的价值,发展学生的空间观念和初步的推理能力。

  3、让学生在探索活动中获得积极的情感体验,进一步培养学生学习数学的兴趣。

  【教学重点】:

  探索并掌握三角形的面积公式,能正确计算三角形的面积。

  【教学难点】:

  理解三角形面积公式的推导过程。

  【教学准备】:

  每人各两个完全一样的三角形,直角三角形、锐角三角形、钝角三角形任选一种,多媒体课件。

  【教学过程】:

  一、汇报演示

  师:同学们请看屏幕,这两块披萨老师要买一块当做明天的早餐,你建议我买哪一块呢?如果现在给你一组数据呢?

  师:同学们请看屏幕,为了我们在操场玩耍更安全,为每个班级在操场上画分了一个区域,现在咱们班级啊,就剩下这两块选一个了,你打算帮班级选哪一块呢?

  师:为什么买这一块呢?

  师:哦,同学们通过微视频的学习,已经会计算三角形的面积了是吗?

  师:谁能说说三角形面积怎么求:三角形面积=底×高÷2

  师:为什么它的面积是底×高÷2呢?

  生:到前面展示三角形拼平行四边形过程。

  夯实对应关系:两个完全相同的`三角形可以拼成一个()拼成的平行四边形的底等于()拼成的平行四边形的高()因为平行四边形的面积是()所以三角形的面积就是()。

  师:总结三角形面积公式,用字母表示就是,计算三角形面的时候你知道需要注意什么?

  师:刚刚我们一起推导了三角形面积的公式,它是通过转化成平行四边形后来求面积的,那你还记得我们当时学平行四边形的时候是怎样转化的吗?

  师:看来这些知识之间是有联系的,并且我们可以通过已有知识的牵移,就可以解决新的问题。同学们那我们下节课要学习梯形的面积,你能想一想,它的面积可能怎样转化呢?下个微视频当中,我们一同去探究。先看我们的三角形吧。它的面积你学明白了吗?知道求的过程中需要注意什么吗?

  师:一个小小的2会在三角形的世界里为我们带来许多神奇的变化,想见识一下吗?看你能战胜这个数字,还是被它打败了。

  (一)判断题。

  1、两个三角形的底都是20厘米,高都是10厘米,一定可以拼成平行四边形。

  2、两个完全一样的直角三角形一定可以拼成正方形。

  3、面积相等的两个三角形一定等底等高。

  (二)选择题。

  1、下面平行线间的3个三角形大小关系正确的是()

  A、ABC面积大B、BCD面积大C、BCE面积大D、同样大

  2、求右图中三角形面积正确列式为()

  A、4.8×5÷2B、4×5÷2C、4×4.8

  师:你是胜了,还是败了啊?败给了谁啊?哎,知己知彼百战百胜,咱明知和2打仗,怎么就败了呢?可惜啊!如果给你一个反败为胜的机会,你能把握好吗?那么好吧,机会要抓住啊,咱们的敌人还是谁啊?这次战场可别轻敌啊,再败下来,可没机会喽!

  (三)解决问题

  1、已知一个三角形的面积是500平方米,底是40米,求这个三角形的高。

  一个三角形的底是3厘米,高是4厘米,面积是多少厘米?

  另一个三角形的底是3厘米,高是4厘米,面积是多少厘米?

  还有一个三角形,底是4厘米,高是3厘米,面积是多少厘米?

  一个三角形,底是5厘米,高是2.4厘米,面积是多少厘米?

  拓展延伸:

  思考一:三角形和平行四边形面积相同,底也相同,它们的高什么关系?

  思考二:三角形和平行四边形面积相同,高也相同,它们的底什么关系?

  思考提示:若头脑中不能建立起两个图形,我们可以利用假设方式求出它们各自的高和底再进行观察。可以假设一组数据,假设它们的面积都是20平方厘米,底都是4厘米,我们可以求出它们的高再进行观察。如果思考一你能解决,相信思考二你便能推导出这种关系,如果不能,还可以利用假设的方法,比一比,看谁最聪明。

  如果你能弄清楚上面的思考题,看看自己能不能快速计算出下面几道题?

  三角形和平行四边形面积相同,底相同,三角形的高是30厘米,平行四边的高是?

  三角形和平行四边形面积相同,底相同,平行四边形的高是30厘米,三角形的高是?

  三角形和平行四边形面积相同,高相同,三角形的底是20厘米,平行四边的底是?

  三角形和平行四边形面积相同,高相同,平行四边形的底是20厘米,三角形的底是?

【三角形的面积教学设计】相关文章:

三角形面积的教学设计02-23

《三角形面积》的教学设计优秀08-23

《认识面积》教学设计10-25

数学面积的教学设计08-19

圆的面积教学设计02-27

梯形面积计算教学设计01-25

《组合图形的面积》教学设计05-27

《圆柱的表面积》教学设计06-14

圆的面积教学设计15篇04-28