分式方程教学设计优秀

时间:2024-09-21 16:41:18 教学设计 我要投稿
  • 相关推荐

分式方程教学设计优秀

  作为一名辛苦耕耘的教育工作者,时常需要准备好教学设计,教学设计是连接基础理论与实践的桥梁,对于教学理论与实践的紧密结合具有沟通作用。那么优秀的教学设计是什么样的呢?下面是小编帮大家整理的分式方程教学设计优秀,仅供参考,希望能够帮助到大家。

分式方程教学设计优秀

分式方程教学设计优秀1

  教学目标

  1、知识与技能

  能应用所学的函数知识解决现实生活中的问题,会建构函数“模型”。

  2、过程与方法

  经历探索一次函数的应用问题,发展抽象思维。

  3、情感、态度与价值观

  培养变量与对应的思想,形成良好的函数观点,体会一次函数的应用价值。

  重、难点与关键

  1、重点:一次函数的应用。

  2、难点:一次函数的应用。

  3、关键:从数形结合分析思路入手,提升应用思维。

  教学方法

  采用“讲练结合”的教学方法,让学生逐步地熟悉一次函数的应用。

  教学过程

  一、范例点击,应用所学

  例5、小芳以200米/分的速度起跑后,先匀加速跑5分,每分提高速度20米/分,又匀速跑10分,试写出这段时间里她的'跑步速度y(单位:米/分)随跑步时间x(单位:分)变化的函数关系式,并画出函数图象。

  例6、A城有肥料200吨,B城有肥料300吨,现要把这些肥料全部运往C、D两乡。从A城往C、D两乡运肥料的费用分别为每吨20元和25元;从B城往C、D两乡运肥料的费用分别为每吨15元和24元,现C乡需要肥料240吨,D乡需要肥料260吨,怎样调运总运费最少?

  解:设总运费为y元,A城往运C乡的肥料量为x吨,则运往D乡的肥料量为(200—x)吨。B城运往C、D乡的肥料量分别为(240—x)吨与(60+x)吨。y与x的关系式为:y=20x+25(200—x)+15(240—x)+24(60+x),即y=4x+10040(0≤x≤200)。

  由图象可看出:当x=0时,y有最小值10040,因此,从A城运往C乡0吨,运往D乡200吨;从B城运往C乡240吨,运往D乡60吨,此时总运费最少,总运费最小值为10040元。

  拓展:若A城有肥料300吨,B城有肥料200吨,其他条件不变,又应怎样调运?

  二、随堂练习,巩固深化

  课本P119练习。

  三、课堂总结,发展潜能

  由学生自我评价本节课的表现。

  四、布置作业,专题突破

  课本P120习题14第9,10,11题。

分式方程教学设计优秀2

  教学目标:

  1、本节课使学生掌握可化为一元二次方程的分式方程的解法,能用去分母的方法或换元的方法求此类方程的解,并会验根。

  2、使学生掌握运用去分母或换元的方法解可化为一元二次方程的分式方程;使学生理解转化的数学基本思想;

  3、使学生能够利用最简公分母进行验根。

  教学重点:

  可化为一元二次方程的分式方程的解法。

  教学难点:

  教学难点:解分式方程,学生不容易理解为什么必须进行检验。

  教学过程:

  在初二我们已经学过分式方程的概念及可化为一元一次方程的分式方程的解法,知道了解可化为一元一次方程的分式方程的解题步骤以及验根的目的,了解了转化的思想方法的基本运用.今天,我们将在此基础上,来学习可化为一元二次方程的分式方程的解法.“12.7节”是在学生已经掌握的同类型的方程的解法,直接点出可化为一元二次方程的分式方程的解法与可化为一元一次方程的分式方程的解法相类同,及产生增根的原因,以激发学生归纳总结的欲望,使学生理解类比方法在数学解题中的.重要性,使学生进一步加深对“转化”这一基本数学思想的理解,抓住学生的注意力,同时可以激起学生探索知识的欲望。

  为了使学生能进一步加深对“类比”、“转化”的理解,可以通过回忆复习可化为一元一次方程的分式方程的解法,探求解可化为一元二次方程的分式方程的解法,同时通过对产生增根的分析,来达到学生对“类比”的方法及“转化”的基本数学思想在数学学习中的重要性的理解,从而调动学生能积极主动地参与到教学活动中去。

  一、新课引入:

  1.什么叫做分式方程?解可化为一元一次方程的分化方程的方法与步骤是什么?

  2.解可化为一元一次方程的分式方程为什么要检验?检验的方法是什么?

  3、产生增根的原因是什么?.

  二、新课讲解:

  通过新课引入,可直接点出本节的内容:可化为一元二次方程的分式方程及其解法,类比地提出可化为一元二次方程的分式方程的解法与可化为一元一次方程的分式方程的解法相同。

  点出本节内容的处理方法与以前所学的知识完全类同后,让全体学生对照前面复习过的分式方程的解,来进一步加深对“类比”法的理解,以便学生全面地参与到教学活动中去,全面提高教学质量。

  在前面的基础上,为了加深学生对新知识的理解,与学生共同分析解决例题,以提高学生分析问题和解决问题的能力。

【分式方程教学设计优秀】相关文章:

优秀的教学设计08-27

《掌声》教学设计优秀05-28

《观潮》优秀教学设计01-25

《对称》优秀教学设计02-03

松鼠教学设计优秀08-14

《莺》优秀教学设计12-10

(优秀)数学教学设计09-16

《祝福》优秀的教学设计05-10

《倒数》教学设计优秀06-06