高中数学说课稿
作为一位兢兢业业的人民教师,就有可能用到说课稿,认真拟定说课稿,那么写说课稿需要注意哪些问题呢?以下是小编精心整理的高中数学说课稿,供大家参考借鉴,希望可以帮助到有需要的朋友。
高中数学说课稿1
尊敬的各位专家、评委:
上午好!
今天我说课的课题是人教A版必修2第二章第二节《直线与圆的位置关系》。
我尝试利用新课标的理念来指导教学,对于本节课,我将以“教什么,怎么教,为什么这样教”为思路,从教材分析、目标分析、教法学法分析、教学过程分析和评价分析五个方面来谈谈我对教材的理解和教学的设计,敬请各位专家、评委批评指正。
一、教材分析
地位和作用
学生在初中的学习中已经了解直线与圆的位置关系,并知道可以利用直线与圆的焦点的个数以及圆心与直线的距离d与半径r的关系判断直线与圆的位置关系。但是,在初中学习时,利用圆心与直线的距离d与半径r的关系判断直线与圆的位置关系的方法却以结论性的形式呈现。在高一学习了解析几何后,要考虑的问题是如何掌握由直线和圆的方程判断直线与圆的位置关系的方法。解决问题的方法主要是几何法和代数法。其中几何法应该是在初中学习的基础上,结合高中所学的点到直线的距离公式求出圆心与直线的距离d后,比较与半径r的关系。从而作出判断,适可而止第引进用联立方程组转化为二次方程判别根的“纯代数判别法”,并与“几何法”欣赏比较,以决优劣,从而也深化了基本的“几何法”。含参数的问题、简单的弦的问题、切线问题等综合问题作为进一步的拓展提高或综合应用,也适度第引入课堂教学中,但以深化“判定直线与圆的位置关系”为目的,要控制难度。虽然学生学习解析几何了,但是把几何问题代数化无论是思维习惯还是具体转化方法,学生仍是似懂非懂,因此应不断强化,逐渐内化为学生的习惯和基本素质。
二、目标分析
(一)、教学目标
1、知识与技能
理解直线与圆的位置的种类;
利用平面直角坐标系中点到直线的距离公式求圆心到直线的距离;
会用点到直线的距离来判断直线与圆的位置关系。
2、过程与方法
设直线L:ax+by+c=o,圆C:x2+y2+Dx+Ey+F=0,圆的半径为r,圆心(- ,- )到直线的距离为d,则判别直线与圆的位置关系的根据有以下几点:
当d >r时,直线l与圆c相离;
当d =r时,直线l与圆c相切;
当d
3、情态与价值观
让学生通过观察图形,理解并掌握直线与圆的位置关系,培养学生数形结合的思想。
(二)、教学重点与难点
1、重点:直线与圆的位置关系的几何图形及其判断方法。
2、难点:用坐标判断直线与圆的位置关系。
三、教法学法分析
(一)、教法
教学过程是教师和学生共同参与的过程,启发学生自主性学习,充分调动学生的积极性、主动性;有效地渗透数学思想方法,提高学生素质。根据这样的原则和所要完成的教学目标,并为激发学生的学习兴趣,我采用如下的教学方法:
1、启发引导学生思考、分析、实验、探索、归纳。
2、采用“从特殊到一般”、“从具体到抽象”的方法。
3、体现“对比联系”、“数形结合”及“分类讨论”的思想方法。
4、投影仪演示法。
在整个过程中,应以学生看,学生想,学生议,学生练为主体,教师在学生仔细观察、类比、想象的基础上通过问题串的形式加以引导点拨,对照,归纳,整理,只有这样,才能唤起学生对原有知识的回忆,自觉地找到新旧知识的联系,使新学知识更牢固,理解更深刻。
(二)、学法
建构主义学习理论认为,学习是学生积极主动地建构知识的过程,学习应该与学生熟悉的背景相联系。在教学中,让学生在问题情境中,经历知识的形成和发展,通过观察、操作、归纳、探索、交流、反思参与学习,认识和理解数学知识,学会学习,发展能力。
四、教学过程分析
(一)、教学过程设计
问题 设计意图 师生活动
1、初中学过的平面几何中,直线与圆的位置关系有几类? 启发学生由图形获取判断直线与圆的位置关系的直观认知,引入新课 师:让学生之间进行讨论,交流,引导学生观察图形,导入新课
生:看图,并说出自己的看法
2、直线与圆的位置关系有几种? 得出直线与圆的位置关系的几何特征与种类 师:引导学生利用类比,归纳的思想,总结直线与圆的位置关系的种类,进一步神话数形结合的数学思想
生:学生观察图形,利用类比,归纳的'思想,总结直线与圆的位置关
3、在初中,我们怎么样判断直线与圆的位置关系呢?如何用直线与圆的方程判断他们之间的位置关系呢?
你能说出判断直线与圆的位置关系的两
种方法吗? 使学生回忆初中的数学知识,培养抽象的概括能力。
抽象判断呢直线与圆的位置关系的思路和方法 师:引导学生回忆初中判断直线与圆的位置关系的思想过程
生:回忆直线与圆的位置关系的判断过程
师:引导学生从集合的角度判断直线与圆的方法
生:利用图形,寻求两种方法的数学思路
5、你能用两种判断直线与圆的位置关系的数学思路解决例1的问题吗? 体会判断直线与圆的位置关系的思想方法,关注量与量的之间的关系 师:指导学生阅读教材书上的例1
生:阅读教材书上的例1,并完成教材书上的136页的练习题2
6、通过学习教材书上的例1,你能总结下判断直线与圆的位置 关系的步骤吗? 是学生熟悉判断直线与圆的位置关系的基本步骤 生:于都例1
师:分析例1 ,并展示解答过程,启发学生概括判断直线与圆的位置关系的基本步骤,注意给学生留有思考的时间
生:交流自己总结的步骤
7、通过学习教材书上的例2,你能说明例2中体现的数学思想方法吗? 进一步深化数形结合的数学思想 师:指导学生阅读并完成教材书上的例2 ,启发学生利用数形结合的数学思想解决问题
生:阅读教材书上的例2 ,并完成137的练习题
8、通过例2的学习,你发现了什么? 明确弦长的运算方法 师:引导并启发学生探索直线与圆的相交弦的求法
生:通过分析,抽象,归纳,得出相交弦的运算方法
9、完成教材书上的136页的习题1234 巩固所学过的知识,进一步理解和掌握直线与圆的位置关系 师:指导学生完成练习题
生:互相讨论交流,完成练习题
10、课堂小结
教师提出下列问题让学生思考
通过直线与圆的位置关系的判断,你学到什么了?
判断直线与圆的位置关系有几种方法?他们的特点是什么?
如何求直线与圆的相交弦长?
(二)、作业设计
作业分为必做题和选择题,必做题是对本节课学生知识水平的反馈,选择题是对本节课内容的延伸与连贯,强调学以致用。通过作业设置,使不同层次的学生都可以获得成功的喜悦,看到自己的潜能,从而激发学生饱满的学习兴趣,促进学生的自主发展、合作探究的学习氛围的形成。
我设计了以下作业:
必做题:课后习题A 1,2,3;
选择题:课后习题B1,2,3;
(三)、板书设计
板书要基本体现课堂的内容和方法,体现课堂进程,能简明扼要反映知识结构及其相互关系:能指导教师的教学进程、引导学生探索知识;通过使用幻灯片辅助板书,节省课堂时间,使课堂进程更加连贯。
五、评价分析
学生学习的结果评价固然重要,但是更重要的是学生学习的过程评价。我采用了及时点评、延时点评与学生互评相结合,全面考查学生在知识、思想、能力等方面的发展情况,在质疑探究的过程中,评价学生是否有积极的情感态度和顽强的理性精神,在概念反思过程中评价学生的归纳猜想能力是否得到发展,通过巩固练习考查学生对本节是否有一个完整的集训,并进行及时的调整和补充。
以上就是我对本节课的理解和设计,敬请各位专家、评委批评指正。
谢谢!
高中数学说课稿2
一、教学内容分析
圆锥曲线的定义反映了圆锥曲线的本质属性,它是无数次实践后的高度抽象.恰当地利用定义解题,许多时候能以简驭繁.因此,在学习了椭圆、双曲线、抛物线的定义及标准方程、几何性质后,再一次强调定义,学会利用圆锥曲线定义来熟练的解题”。
二、学生学习情况分析
我所任教班级的学生参与课堂教学活动的积极性强,思维活跃,但计算能力较差,推理能力较弱,使用数学语言的表达能力也略显不足。
三、设计思想
由于这部分知识较为抽象,如果离开感性认识,容易使学生陷入困境,降低学习热情.在教学时,借助多媒体动画,引导学生主动发现问题、解决问题,主动参与教学,在轻松愉快的环境中发现、获取新知,提高教学效率.
四、教学目标
1.深刻理解并熟练掌握圆锥曲线的定义,能灵活应用定义解决问题;熟练掌握焦点坐标、顶点坐标、焦距、离心率、准线方程、渐近线、焦半径等概念和求法;能结合平面几何的基本知识求解圆锥曲线的方程。
2.通过对练习,强化对圆锥曲线定义的理解,提高分析、解决问题的能力;通过对问题的不断引申,精心设问,引导学生学习解题的一般方法。
3.借助多媒体辅助教学,激发学习数学的兴趣.
五、教学重点与难点:
教学重点
1.对圆锥曲线定义的理解
2.利用圆锥曲线的定义求“最值”
3.“定义法”求轨迹方程
教学难点:
巧用圆锥曲线定义解题
六、教学过程设计
【设计思路】
(一)开门见山,提出问题
一上课,我就直截了当地给出——
例题1:(1) 已知A(-2,0), B(2,0)动点M满足|MA|+|MB|=2,则点M的轨迹是( )。
(A)椭圆 (B)双曲线 (C)线段 (D)不存在
(2)已知动点 M(x,y)满足(x1)2(y2)2|3x4y|,则点M的轨迹是( )。
(A)椭圆 (B)双曲线 (C)抛物线 (D)两条相交直线
【设计意图】
定义是揭示概念内涵的逻辑方法,熟悉不同概念的不同定义方式,是学习和研究数学的一个必备条件,而通过一个阶段的学习之后,学生们对圆锥曲线的定义已有了一定的认识,他们是否能真正掌握它们的本质,是我本节课首先要弄清楚的问题。
为了加深学生对圆锥曲线定义理解,我以圆锥曲线的定义的运用为主线,精心准备了两道练习题。
【学情预设】
估计多数学生能够很快回答出正确答案,但是部分学生对于圆锥曲线的定义可能并未真正理解,因此,在学生们回答后,我将要求学生接着说出:若想答案是其他选项的.话,条件要怎么改?这对于已学完圆锥曲线这部分知识的学生来说,并不是什么难事。但问题(2)就可能让学生们费一番周折—— 如果有学生提出:可以利用变形来解决问题,那么我就可以循着他的思路,先对原等式做变形:(x1)2(y2)2
5这样,很快就能得出正确结果。如若不然,我将启发他们从等式两端的式子|3x4y|5
入手,考虑通过适当的变形,转化为学生们熟知的两个距离公式。
在对学生们的解答做出判断后,我将把问题引申为:该双曲线的中心坐标是 ,实轴长为 ,焦距为 。以深化对概念的理解。
(二)理解定义、解决问题
例2 (1)已知动圆A过定圆B:x2y26x70的圆心,且与定圆C:xy6x910 相内切,求△ABC面积的最大值。
(2)在(1)的条件下,给定点P(-2,2), 求|PA|
七、教学反思
1.本课将借助于“XXX”,将使全体学生参与活动成为可能,使原来令人难以理解的抽象的数学理论变得形象,生动且通俗易懂,同时,运用“多媒体课件”辅助教学,节省了板演的时间,从而给学生留出更多的时间自悟、自练、自查,充分发挥学生的主体作用,这充分显示出“多媒体课件”与探究合作式教学理念的有机结合的教学优势。
2.利用两个例题及其引申,通过一题多变,层层深入的探索,以及对猜测结果的检测研究,培养学生思维能力,使学生从学会一个问题的求解到掌握一类问题的解决方法. 循序渐进的让学生把握这类问题的解法;将学生容易混淆的两类求“最值问题”并为一道题,方便学生进行比较、分析。虽然从表面上看,我这一堂课的教学容量不大,但事实上,学生们的思维运动量并不会小。
总之,如何更好地选择符合学生具体情况,满足教学目标的例题与练习、灵活把握课堂教学节奏仍是我今后工作中的一个重要研究课题.而要能真正进行素质教育,培养学生的创新意识,自己首先必须更新观念——在教学中适度使用多媒体技术,让学生有参与教学实践的机会,能够使学生在学习新知识的同时,激发起求知的欲望,在寻求解决问题的办法的过程中获得自信和成功的体验,于不知不觉中改善了他们的思维品质,提高了数学思维能力。
高中数学说课稿3
一、教材分析
本节内容是等差数列(第一课时)的内容,属于数与代数领域的知识。本节是数列课程的新授课,为后面等比数列以及数列求和的知识点作基础。数列是高中数学重要内容之一,它有着广泛的实际应用。等差数列是在学生学习了数列的有关概念和给出数列的两种方法——通项公式和递推公式的基础上,对数列的知识进一步深入和拓广。同时等差数列也为今后学习等比数列提供了学习对比的依据。在数学思想的方面,数列在处理数与数之间的关系中,更多地培养了学生运用函数与函数关系的思想。
二、教学目标
根据课程标准的要求和学生的实际水平,确定了本次课的教学目标
(1)在知识上:理解并掌握等差数列的概念;了解等差数列的通项公式的推导过程及思想。
(2)在能力上:培养学生观察、分析、归纳、推理的能力;以形象的实际例子作为学生理解与练习的模板,使学生在不断实践中巩固学习到的知识;通过阶梯性练习,提高学生分析问题和解决问题的能力。
(3)在情感上:通过对等差数列在实际问题中的研究,培养学生主动探索、勇于发现的求知精神;养成细心观察、认真分析、善于总结的良好思维习惯。
3、教学重点和难点
根据课程标准的要求我确定本节课的教学重点为: ①等差数列的概念。
②等差数列的通项公式的推导过程及应用。
三、教学方法分析:
对于高中学生,知识经验比较贫乏,虽然他们的智力发展已到了形式运演阶段,但并不具备教强的抽象思维能力和演绎推理能力,所以本堂课将从实际中的问题出发,以学生日常生活中较易接触的一些数学问题,籍此启发学生对于数列知识点的理解。本节课大多采用启发式、讨论式的教学方法,通过问题激发学生求知欲,使学生主动参与数学实践活动,以独立思考和相互交流的形式,在教师的指导下发现、分析和解决问题,并学会将数学知识运用到实际问题的解决中。
四、教学过程
通过复习上节课数列的定义来引入几个数列
1)0,5,10,15,20,25.....2)18,15.5,13,10.5,8,4.5 3) 48,53,58,63,68.....通过这3个数列,初步认识等差数列的特征,为后面的概念学习建立基础。由学生观察第一个数列与第三个数列的特点,并与第二个做对比,引出等差数列的概念。
(二)新课探究
1、由引入自然的给出等差数列的概念:
定义:如果一个数列,从第二项开始它的每一项与前一项之差都等于同一常数,这个数列就叫等差数列,这个常数叫做等差数列的公差,通常用字母d来表示。强调:
① “从第二项起”满足条件;
②公差d一定是由后项减前项所得;
③每一项与它的前一项的差必须是同一个常数;
在理解概念的基础上,由学生将等差数列的文字语言转化为数学语言,归纳出数学表达式:
an+1-an=d (n≥1)
同时为了配合概念的理解,引导学生讲本不是等差数列的第二组数列修改成等差数列。并由观察三组数列的不同特点,由此强调:公差可以是正数、负数,并再举出特例数列1,1,1,1,1,1,1......说明公差也可以是0。
2、第二个重点部分为等差数列的通项公式
在归纳等差数列通项公式中,我采用讨论式的'教学方法。给出等差数列的首项,公差d,运用求数列通项公式的办法------迭加法:整个过程通过互相讨论的方式既培养了学生的协作意识又化解了教学难点。
若一等差数列{an }的首项是a1,公差是d,则据其定义可得:
a2 – a1 =d a3 – a2 =d a4 – a3 =d …… an – an-1=d将这(n-1)个等式左右两边分别相加,就可以得到an– a1= (n-1) d即an= a1+(n-1) d(1)
当n=1时,(1)也成立,
所以对一切n∈N﹡,上面的公式都成立
因此它就是等差数列{an}的通项公式。对照已归纳出的通项公式启发学生想出将n-1个等式相加。证出通项公式。
在这里通过运用迭加法这一数学思想,便于学生从概念理解的过程过渡到运用概念的过程。
接着举例说明:若一个等差数列{an}的首项是1,公差是2,得出这个数列的通项公式是:an=1+(n-1)×2,
即an=2n-1以此来巩固等差数列通项公式运用。
(三)应用举例
现实生活中,以学生较为熟悉的iphone手机的数据作为例子。观察Iphone手机的发布时间,iphone第一代发布于20xx年,第二代发布于20xx年,第三代发布于20xx年,第四代发布于20xx年。现在第六代发布于今年20xx年。首先,让学生观察从04年到10年每两代iphone发布的间隔时间,让学生自行寻找规律,并在此基础上让学生估测第五代iphone的发布时间,并验证第五代iphone发布于20xx年。同时,再让学生预测在未来,下一部iphone发布的时间,是学生体验到将数学知识运用到实际中的方法与步骤。为了加深联系,再给出了每代iphone的价格:iphone1 4299;iphone2 4800;iphone3 5299;iphone4 5988;iphone5 6300。在给出的数据上,将价格随时间的变化以坐标轴的形式作图表示出来,让学生观察到虽然这些数据非等差,但是可以大致变为等差的直线图像,让学生体会到“拟合数据”的思想。在此基础上,让学生进行练习,预测14年如今iphone6的上市价格为6888元,并与学生通过数列进行推理的价格进行对比,让学生对自己在实践中解决问题的过程中找到一定的认同感。
五、归纳小结
提问学生,总结这节课的收获
1、等差数列的概念及数学表达式,并强调关键字:从第二项开始,它的每一项与前一项之差都等于同一常数。
2、等差数列的通项公式an= a1+(n-1) d
3、将让学生在实践中了解,将数列知识点运用到实际中的方法。
4、在课末提出启发性问题,若是有人将每一部iphone都买入,那他一共花费了多少钱?借此引出了下一节,等差数列求和的知识点。让学生尝试自行去思考这样的问题。
5、布置作业
高中数学说课稿4
一、教材分析
1、教材的地位和作用
推理与证明是人教版普通高中课程标准实验教科书选修1—2第二章第一节内容,思想贯穿于高中数学的整个知识体系,是新课标教材的亮点之一。本节内容将归纳推理的一般方法进行了必要的总结和归纳,同时也对后继知识的学习起到引领的作用、
2、教材处理
《归纳推理》是培养学生观察、分析、发现、概括、猜想和探索能力的极好素材。根据本节课标要求:从演示观察,先形象地真实举例,然后转化为猜想,引导探究典型例子分析,加强对概念的理解。
二、教学目标分析:
1、知识技能目标:理解归纳推理的概念,了解归纳推理的作用,掌握归纳推理的一般步骤,会利用归纳进行一些简单的归纳推理。
2、过程方法目标:学生自主学习归纳推理的一般方法,建构归纳推理的思维方式、让学生明白数学发现的过程和方法,培养学生分析解决问题的能力,锻炼他们探索规律,融会贯通的能力,并使学生思维能力得到提升。
3、情感态度,价值观目标:通过学生主动探究、合作学习、相互交流,培养不怕困难、勇于探索的优良作风,增强学生的数学应用意识,提高学生数学思维的情趣,给学生成功的体验,形成学习数学知识、了解数学文化的积极态度、
三、教学的重点、难点分析:
1、教学重点:了解归纳推理含义、能利用归纳进行简单推理。
教学策略:演示观察,先形象地真实举例,然后转化为猜想,引导探究典型例子分析,加强对概念的理解
2、教学难点:用归纳进行推理,做出猜想。
教学策略:第一,创设情景;第二,观察规律,得出猜想;第三,实际应用,提出质疑。
四、教法分析、教学手段与教具选择:
1、教学方法:自主探究、协作学习、启发发现、课堂讨论法
2、教具:多媒体、粉笔、黑板。
3、教学手段:多媒体教学课件。
五、学法分析:
本课教给学生的学法是“发现问题、分析问题、解决问题”。因此本课教学过程中,让学生带着学习任务通过自主学习发现、课堂讨论、相互合作等方式,使学生在完成任务的过程中不知不觉实现知识的传递、迁移和融合。
六、教学过程设计分析:
1、创设情景、引入新课
游戏:袋子里装有大小质地一样的玻璃球,摸一个出来是红色,摸第二个出来也是红色,第三、第四还是红色…
问题1:有什么猜想?
师生活动:老师把玻璃球搅拌均匀,可叫一个学生摸球,其他学生细心观察。
设计意图:游戏吸引学生注意力,提高学习兴趣,形象地引出归纳推理。
问题2:观察10=3+7,12=5+7,32=13+19 …等式特征,有怎样的规律?
师生活动:这里要引导学生观察:这是一个等式,左右两边数字有什么特征,学生的猜想多种多样,不要抹杀学生的洞察力,可进一步引导学生尝试:其它的偶数有同样的规律吗?
设计意图:通过欣赏一些伟大猜想产生的`过程,探索出歌德巴赫猜想:一个偶数(不小于6)总可以表示成两个奇质数之和。带领学生走进归纳推理的领域。学生主动探究、自我发现,培养勇于探索的优良作风。
问题3:歌德巴赫猜想的历史了解吗?
师生活动:通过多媒体让学生阅读材料。
设计意图:提高学生数学思维的情趣,了解数学文化,对数学充满信心的积极态度,培养爱国精神。
问题4:歌德巴赫猜想的推理过程如何?
师生活动:让学生探究歌德巴赫是怎样提出这个猜想的。
设计意图:通过自己发现歌德巴赫猜想的推理过程———归纳推理的产生,为理解归纳推理的含义做铺垫。
问题5:由上述推理过程能否用自己语言描述归纳推理的含义?
师生活动:学生自己总结,教师个别提问,学生修改,该问题只有部分同学能及时地回答出来。有些同学犹疑不答,有些同学会说出不同的语句获不全面、不十分准确。教师通过评价学生的结论引入归纳推理含义——是由部分到整体、由个别到一般的推理。
设计意图:使学生更深刻理解和记忆归纳推理的含义,培养学生归纳、总结、理解能力,这比老师直接给出概念效果要好得多。
问题6:你能用归纳推理提出一个猜想吗?
师生活动:学生各抒己见,踊跃回答,有生活的,有数学的,其它学科的等。例如:
① 金、银、铜、铁、铝等金属能导电,归纳出“一切金属都能导电”
② 硫酸、硝酸、碳酸等含有氧元素,归纳出“所有的酸都含有氧元素”
③篮球、排球、乒乓球等是圆的,归纳出“所有的球都是圆的”
……
可以让同学们相互补充,老师适当点评和肯定。
设计意图:更深一步具体理解归纳推理的含义,初步形成能用归纳推理得出结论的步骤。感受归纳推理无处不在,自然而有趣,创造和谐积极的学习气氛。这比直接解释概念记忆要深刻和通俗易懂。
2、典型例题、知识应用
例:观察右图,可以发现
1+3=4=22,
1+3+5=9=32,
1+3+5+7=16=42,
1+3+5+7+9=25=52,
问题7:上面等式如何由图中观察出来?1+3+ …+1999=?由上述具体事实能得出怎样的一般性规律?能用一条等式表示出来吗?
师生活动:问题逐个解决,个别回答,集体回答相结合。部分学生会观察上式,但不会从图中总结规律,这里要从小正方形的个数或面积去引导他们观察,引导学生得出等式的规律要看等号左右两边存在什么规律。
总结:由几条特殊的等式存在的规律,归纳出一般性的结论1+3+…+(2n-1)=n2(n∈N*)成立,这就是归纳推理。
设计意图:给出例子让学生通过直观感知、观察分析、归纳体会归纳推理的一般步骤,进一步感受归纳推理的作用。让他们懂得数形结合去做题。
问题8:
师生活动:
题目没有直接给出部分事物特征,应先找出来再观察、归纳、猜想、引导学生做题方向,个别提问,师生共同完成、总结。
设计意图:体会归纳推理的一般步骤,进一步感受归纳推理的作用。让学生感受归纳推理起到了能够提供研究方向的作用,培养学生进行归纳推理的能力。
问题9、归纳推理的一般步骤如何?
师生活动:通过两个例题,学生自行总结,教师综合结论得出
一般步骤:⑴对有限的资料进行观察、分析、归纳整理;⑵提出带有规律性的结论,即猜想;
设计意图:总结步骤,为后面应用打基础,让学生自行总结充分体现学生的自主性。
3、思考练习
1)、观察下面的“三角阵”
1
1 1
1 2 1
1 3 3 1
1 4 6 4 1
1 5 10 a 5 1
……
1 10 45 … … 45 10 1
试找出相邻两行数之间的关系,并求a
师生活动:学生观察,寻找规律,老师和学生共同评价学生的观察结果并接着问:上面“三角阵”还有其它规律吗?让学生分组讨论回答
设计意图:感受数学美和发现规律的喜悦,激发学生更积极地去寻找规律、认识规律。同时让学生感受到只要做个有心人,发现规律并非难事。
2)、在数列{an}中,若a1=1,
an+1=(n∈N﹡),试猜想这个数列的通项公式、
师生活动:请三位学生上黑板板书,并另请三位批改,让学生自己掌握做题方法和步骤
答案:通过运算a2、a3、a4等的值得出an=
3)、画一画、猜一猜:根据下列图案中圆圈的排列规则,猜想第(5)个图形是怎样排列的,由多少个圆圈组成;第n个图形中共有多少个圆圈?
n=1 n=2 n=3 n=4
师生活动:由学生在讲义上作图,发现规律并总结,再通过学生之间充分讨论之后相互交流,教师点评。
设计意图:学生主动探究规律,感受归纳推理对发现新事实、得出新结论的作用。引导学生发现并总结规律。给学生创建一个开放的、有活力、有个性的数学学习环境,感受数学美和发现规律的喜悦,激发学生更积极地去寻找规律、认识规律。同时让学生感受到只要做个有心人,发现规律并非难事。
答案:第5个图形中共有圆圈21个;第n个图形中共有圆圈:n(n—1)+1个
4、质疑、解疑
问题9:猜想的一般结论是否成立?即归纳推理的可靠性如何?为什么要学习归纳推理?
师生活动:教师生动讲述欧拉发现第五个费马数的过程,激发学生的好奇心与求知欲,同时,通过“猜想——验证——再猜想”说明科学的进步与发展处在一个螺旋上升的过程。
再例:硫酸、硝酸、碳酸等酸中含有氧元素,归纳出“所有的酸都含有氧元素”。反例:盐酸是酸,但不含氧元素
设计意图:通过这个问题情境的设置,引起学生对归纳推理的结论可靠性进行思考。其结论具有猜测性、或然性,不能作为数学证明的依据。但它是一种具有创造性的推理,为研究问题提供一个方向让学生在解决问题的过程中发现归纳推理需要检验过程,从而自我修正归纳推理的一般步骤。
问题10:组织学生进行分组讨论,引导学生从生活和学习两大方面对归纳推理的应用进行举例。
师生活动:分组竞赛,挑1、2个小组的题目出来让其他小组进行分析。
设计意图:分组讨论降低了概念学习的难度,加深对归纳推理的应用使学生能够更多的围绕重点展开探索和研究。学生的主体意识在这里获得充分的体现。
七、课堂小结:
1、你在知识方面学会了什么?
2、你注意到过程与方法了吗?
3、你在思维和情感方面有何收益?
师生活动:学生讨论总结,相互补充,教师点评。
设计意图:让学生自己小结,这是一个多维整合的过程,是一个高层次的自我认识过程。
八、作业
1、(必做题)课本P30第1题
2、(选做题):猜想10条直线的交点最多有多少个?(画图分析)答案:45个
3、课后学习:上网查找了解有关“四色猜想”、“哥尼斯堡七桥猜想”、“叙拉古猜想”、“费马猜想”等资料
设计意图:设计必做题是知识的初步应用和基础知识的巩固选做题是针对学有余力的同学提升高度,链接高考。思考题是开放性题目,拓展学生思维,用资料进行数学学习,同时让学生了解网络是自主学习和拓展知识面的一个重要平台。这是本节内容的一个提高与拓展。
九、教学效果分析:
本节课以问题为载体,设计情景,生活、数学实力生动地学习了归纳推理的知识,体现了学生主动,教师指导的地位。本节课在注重基础知识的同时培养学生归纳推理的能力,在尊重学生个性差异的基础上选择合适的例题、习题,为不同层次学生的学习提供了广阔的空间。以分组讨论为探究的基本形式,激励学生积极主动地探索结论,同时利用著名猜想让学生体会数学的人文价值。通过生活实例和数学实例,使学生了解归纳推理的涵义,感受归纳推理能猜测和发现一些新结论,探索和提供解决一些问题的思路和方向的作用,并能运用归纳进行简单的推理、
十、板书设计
归纳推理
一、推理
二、归纳推理的含义
三、归纳推理的应用
四、归纳推理的一般步骤
五、小结
例1
例2
练习
高中数学说课稿5
一、教材分析
(一)教材的地位和作用
“一元二次不等式解法”既是初中一元一次不等式解法在知识上的延伸和发展,又是本章集合知识的运用与巩固,也为下一章函数的定义域和值域教学作铺垫,起着链条的作用。同时,这部分内容较好地反映了方程、不等式、函数知识的内在联系和相互转化,蕴含着归纳、转化、数形结合等丰富的数学思想方法,能较好地培养学生的观察能力、概括能力、探究能力及创新意识。
(二)教学内容
本节内容分2课时学习。本课时通过二次函数的图象探索一元二次不等式的解集。通过复习“三个一次”的关系,即一次函数与一元一次方程、一元一次不等式的关系;以旧带新寻找“三个二次”的关系,即二次函数与一元二次方程、一元二次不等式的关系;采用“画、看、说、用”的思维模式,得出一元二次不等式的解集,品味数学中的和谐美,体验成功的乐趣。
二、教学目标分析
根据教学大纲的要求、本节教材的特点和高一学生的认知规律,本节课的教学目标确定为:
知识目标——理解“三个二次”的关系;掌握看图象找解集的方法,熟悉一元二次不等式的解法。
能力目标——通过看图象找解集,培养学生“从形到数”的转化能力,“从具体到抽象”、“从特殊到一般”的归纳概括能力。
情感目标——创设问题情景,激发学生观察、分析、探求的学习激情、强化学生参与意识及主体作用。
三、重难点分析
一元二次不等式是高中数学中最基本的不等式之一,是解决许多数学问题的重要工具。本节课的重点确定为:一元二次不等式的解法。
要把握这个重点。关键在于理解并掌握利用二次函数的图象确定一元二次不等式解集的`方法——图象法,其本质就是要能利用数形结合的思想方法认识方程的解,不等式的解集与函数图象上对应点的横坐标的内在联系。由于初中没有专门研究过这类问题,高一学生比较陌生,要真正掌握有一定的难度。因此,本节课的难点确定为:“三个二次”的关系。要突破这个难点,让学生归纳“三个一次”的关系作铺垫。
四、教法与学法分析
(一)学法指导
教学矛盾的主要方面是学生的学。学是中心,会学是目的。因此在教学中要不断指导学生学会学习。本节课主要是教给学生“动手画、动眼看、动脑想、动口说、善提炼、勤钻研”的研讨式学习方法,这样做增加了学生自主参与,合作交流的机会,教给了学生获取知识的途径、思考问题的方法,使学生真正成了教学的主体;只有这样做,才能使学生“学”有新“思”,“思”有新“得”,“练”有新“获”,学生也才会逐步感受到数学的美,会产生一种成功感,从而提高学生学习数学的兴趣;也只有这样做,课堂教学才富有时代特色,才能适应素质教育下培养“创新型”人才的需要。
(二)教法分析
本节课设计的指导思想是:现代认知心理学——建构主义学习理论。
建构主义学习理论认为:应把学习看成是学生主动的建构活动,学生应与一定的知识背景即情景相联系,在实际情景下进行学习,可以使学生利用已有知识与经验同化和索引出当前要学习的新知识,这样获取的知识,不但便于保持,而且易于迁移到陌生的问题情景中。
本节课采用“诱思引探教学法”。把问题作为出发点,指导学生“画、看、说、用”。较好地探求一元二次不等式的解法。
五、课堂设计
本节课的教学设计充分体现以学生发展为本,培养学生的观察、概括和探究能力,遵循学生的认知规律,体现理论联系实际、循序渐进和因材施教的教学原则,通过问题情境的创设,激发兴趣,使学生在问题解决的探索过程中,由学会走向会学,由被动答题走向主动探究。
(一)创设情景,引出“三个一次”的关系
本节课开始,先让学生解一元二次方程x2-x-6=0,如果我把“=”改成“>”则变成一元二次不等式x2-x-6>0让学生解,学生肯定感到很突然。但是“思维往往是从惊奇和疑问开始”,这样直奔主题,目的在于构造悬念,激活学生的思维兴趣。
为此,我设计了以下几个问题:
1、请同学们解以下方程和不等式:
①2x-7=0;②2x-7>0;③2x-7<0
学生回答,我板书
高中数学说课稿6
尊敬的各位考官:
大家好,我是X号考生,今天我说课的题目是《圆的标准方程》。
对于本节课,我将以教什么、怎么教、为什么这么教为思路,从教材分析、学情分析、教学重难点等几个方面加以阐述。
一、说教材
首先谈一谈我对教材的理解。本节课选自人教A版实验版高中数学必修二,主要探究圆的标准方程。此前学生已经学习了在平面直角坐标系中用方程表示直线,起到良好的铺垫作用。本节课为后续学习圆的一般方程及进一步学习平面解析几何打下基础。
二、说学情
再来谈谈学生的情况。高中生思维能力已经非常成熟,能够有自己独立的思考,所以应该积极发挥这种优势,让学生独立思考探索。
三、说教学目标
基于以上分析,我制定了如下三维教学目标:
(一)知识与技能
掌握圆的标准方程,能够在给出基本条件的情况下求出圆的标准方程。
(二)过程与方法
经历探究圆的标准方程的过程,提升逻辑推理、直观想象与数学运算能力。
(三)情感、态度与价值观
获得成功的体验,增强学习数学的兴趣与信心。
四、说教学重难点
在教学目标的实现过程中,教学重点是圆的标准方程,教学难点是圆的标准方程的探究过程。
五、说教法学法
现代教学理论认为,在教学过程中,学生是学习的主体,教师是学习的组织者、引导者、合作者。根据这一教学理念,本节课我将采用自主探究为主,辅以教师讲解、小组讨论等教学方法,层层递进进行展开。
六、说教学过程
下面重点谈谈我对教学过程的`设计。
(一)导入新课
课堂伊始,为了铺垫用方程表示平面图形的思路,也为了帮助学生完善知识体系,我会带领学生简单回顾之前所学内容——在平面直角坐标系中用坐标、用方程的方法表示一些点、直线,由确定直线的几何要素推导出直线的方程。
进而提出能不能在平面直角坐标系中表示其他图形。用大屏幕展示一些圆形物品,请学生举例更多圆形物品。然后提问:能否用方程的思想在平面直角坐标系中表示圆?由此引出课题。
(二)讲解新知
高中数学说课稿7
今天我说课的内容是高二立体几何(人教版)第九章第二章节第八小节《棱锥》的第一课时:《棱锥的概念和性质》。下面我就从教材分析、教法、学法和教学程序四个方面对本课的教学设计进行说明。
一、说教材
1、本节在教材中的地位和作用:
本节是棱柱的后续内容,又是学习球的必要基础。第一课时的教学目的是让学生掌握棱锥的一些必要的基础知识,同时培养学生猜想、类比、比较、转化的能力。著名的生物学家达尔文说:“最有价值的知识是关于方法和能力的知识”,因此,应该利用这节课培养学生学习方法、提高学习能力。
2. 教学目标确定:
(1)能力训练要求
①使学生了解棱锥及其底面、侧面、侧棱、顶点、高的概念。
②使学生掌握截面的性质定理,正棱锥的性质及各元素间的关系式。
(2)德育渗透目标
①培养学生善于通过观察分析实物形状到归纳其性质的能力。
②提高学生对事物的感性认识到理性认识的能力。
③培养学生“理论源于实践,用于实践”的观点。
3. 教学重点、难点确定:
重 点:1.棱锥的截面性质定理 2.正棱锥的性质。
难 点:培养学生善于比较,从比较中发现事物与事物的区别。
二、说教学方法和手段
1、教法:
“以学生参与为标志,以启迪学生思维,培养学生创新能力为核心”。
在教学中根据高中生心理特点和教学进度需要,设置一些启发性题目,采用启发式诱导法,讲练结合,发挥教师主导作用,体现学生主体地位。
2、教学手段:
根据《教学大纲》中“坚持启发式,反对注入式”的教学要求,针对本节课概念性强,思维量大,整节课以启发学生观察思考、分析讨论为主,采用“多媒体引导点拨”的教学方法以多媒体演示为载体,以“引导思考”为核心,设计课件展示,并引导学生沿着积极的思维方向,逐步达到即定的教学目标,发展学生的逻辑思维能力;学生在教师营造的“可探索”的环境里,积极参与,生动活泼地获取知识,掌握规律、主动发现、积极探索。
三、说学法:
这节课的核心是棱锥的截面性质定理,.正棱锥的性质。教学的指导思想是:遵循由已知(棱柱)探究未知(棱锥)、由一般(棱锥)到特殊(正棱锥)的认识规律,启发学生反复思考,不断内化成为自己的认知结构。
四、 学程序:
[复习引入新课]
1.棱柱的性质:
(1)侧棱都相等,侧面是平行四边形
(2)两个底面与平行于底面的截面是全等的多边形
(3)过不相邻的两条侧棱的截面是平行四边形
2.几个重要的四棱柱:
平行六面体、直平行六面体、长方体、正方体
思考:如果将棱柱的上底面给缩小成一个点,那么我们得到的将会是什么样的体呢?
[讲授新课]
1、棱锥的基本概念
(1).棱锥及其底面、侧面、侧棱、顶点、高、对角面的概念
(2).棱锥的表示方法、分类
2、棱锥的性质
(1). 截面性质定理:
如果棱锥被平行于底面的平面所截,那么截面和底面相似,并且它们面积的比等于截得的棱锥的高与已知棱锥的高的平方比
已知:如图(略),在棱锥S-AC中,SH是高,截面A’B’C’D’E’平行于底面,并与SH交于H’。
证明:(略)
引申:如果棱锥被平行于底面的平面所截,则截得的小棱锥与已知棱锥
的侧面积比也等于它们对应高的.平方比、等于它们的底面积之比。
(2).正棱锥的定义及基本性质:
正棱锥的定义:
①底面是正多边形
②顶点在底面的射影是底面的中心
①各侧棱相等,各侧面是全等的等腰三角形;各等腰三角形底边上的高相等,它们叫做正棱锥的斜高;
②棱锥的高、斜高和斜高在底面内的射影组成一个直角三角形;
棱锥的高、侧棱和侧棱在底面内的射影也组成一个直角三角形
引申:
①正棱锥的侧棱与底面所成的角都相等;
②正棱锥的侧面与底面所成的二面角相等;
(3)正棱锥的各元素间的关系
下面我们结合图形,进一步探讨正棱锥中各元素间的关系,为研究方便将课本 图9-74(略)正棱锥中的棱锥S-OBM从整个图中拿出来研究。
引申:
①观察图中三棱锥S-OBM的侧面三角形状有何特点?
(可证得∠SOM =∠SOB =∠SMB =∠OMB =900,所以侧面全是直角三角形。)
②若分别假设正棱锥的高SO= h,斜高SM= h’,底面边长的一半BM= a/2,底面正多边形外接圆半径OB=R,内切圆半径OM= r,侧棱SB=L,侧面与底面的二面角∠SMO= α ,侧棱与底面组成的角 ∠SBO= β, ∠BOM=1800/n (n为底面正多边形的边数)请试通过三角形得出以上各元素间的关系式。
(课后思考题)
[例题分析]
例1.若一个正棱锥每一个侧面的顶角都是600,则这个棱锥一定不是( )
A.三棱锥 B.四棱锥 C.五棱锥 D.六棱锥
(答案:D)
例2.如图已知正三棱锥S-ABC的高SO=h,斜高SM=L,求经过SO的中点且平行于底面的截面△A’B’C’的面积。
﹙解析及图略﹚
例3.已知正四棱锥的棱长和底面边长均为a,求:
(1)侧面与底面所成角α的余弦(2)相邻两个侧面所成角β的余弦
﹙解析及图略﹚
[课堂练习]
1、 知一个正六棱锥的高为h,侧棱为L,求它的底面边长和斜高。
﹙解析及图略﹚
2、 锥被平行与底面的平面所截,若截面面积与底面面积之比为1∶2,求此棱锥的高被分成的两段(从顶点到截面和从截面到底面)之比。
﹙解析及图略﹚
[课堂小结]
一:棱锥的基本概念及表示、分类
二:棱锥的性质
截面性质定理:如果棱锥被平行于底面的平面所截,那么截面和底面相似,并且它们面积的比等于截得的棱锥的高与已知棱锥的高的平方比
引申:如果棱锥被平行于底面的平面所截,则截得的小棱锥与已知棱锥的侧面积比也等于它们对应高的平方比、等于它们的底面积之比。
2.正棱锥的定义及基本性质
正棱锥的定义:
①底面是正多边形
②顶点在底面的射影是底面的中心
(1)各侧棱相等,各侧面是全等的等腰三角形;各等腰三角形底边上的高
相等,它们叫做正棱锥的斜高;
(2)棱锥的高、斜高和斜高在底面内的射影组成一个直角三角形;棱锥的高、侧棱和侧棱在底面内的射影也组成一个直角三角形
引申: ①正棱锥的侧棱与底面所成的角都相等;
②正棱锥的侧面与底面所成的二面角相等;
③正棱锥中各元素间的关系
[课后作业]
1:课本P52 习题9.8 : 2、 4
2:课时训练:训练一
高中数学说课稿8
各位老师:
大家好!我叫张西元。我说课的题目是《系统抽样》,内容选自于苏教版必修3第二章第一节,课时安排为一个课时。下面我将从教材分析、教学目标分析、教学方法与手段分析、教学过程分析等五大方面来阐述我对这节课的分析和设计:
一、教材分析
1.教材所处的地位和作用
学生已初步了解掌握了简单随机抽样的两种方法,即抽签法与随机数表法,在此基础上进一步学习系统抽样,它也是“统计学”的重要组成部分,通过对系统抽样的学习,更加突出统计在日常生活中的应用,体现它在中学数学中的地位。
2 教学的重点和难点
重点:正确理解系统抽样的概念,能够灵活应用系统抽样的方法解决统计问题。难点:当 不是整数时的处理办法,个体编号具有某种周期性时,“坏样本”的理解。
二、教学目标分析
1.知识与技能目标:
(1)正确理解系统抽样的概念;
(2)掌握系统抽样的一般步骤;
(3)正确理解系统抽样与简单随机抽样的关系;
2、过程与方法目标:
通过对实际问题的探究,归纳应用数学知识解决实际问题的方法,理解分类讨论的数学方法高考资源
3、情感态度与价值观目标:
通过数学活动,感受数学对实际生活的需要,体会现实世界和数学知识的联系
三、教学方法与手段分析
1.教学方法:为了充分让学生自己分析、判断、自主学习、合作交流。因此,我采用讨论发现法教学。
2.教学手段:通过各种教学媒体(计算机)调动学生参与课堂教学的主动性与积极性。
四、教学过程分析
(一)新课引入
1、复习提问:
(1)什么是简单随机抽样?有哪两种方法?
(2)抽签法与随机数表法的一般步骤是什么?
(3)简单随机抽样应注意哪两个原则?
(4)什么样的总体适合简单随机抽样?为什么?
[设计意图]通过复习提问进一步理解掌握简单随机抽样的概念方法和步骤?为新课学习打基础
2、实例探究
实例:某学校为了了解高一年级学生对教师教学的意见,打算从高一年级500名学生中抽取50名进行调查,除了用简单随机抽样获取样本外,你能否设计其他抽取样本的方法?
当总体数量较多时,应当如何抽取?结合具体事例探究问题,设计你的抽取样本的方法。抽取的样本公平性与代表性如何?学生自主探究后小组讨论回答。
[设计意图]通过设置问题情境,让学生参与问题解决的全过程,引导学生探究发现新知识新方法,完成从总体中抽取样本,并发现“等距抽样”的特性,从而形成感性的系统抽样的概念与方法。这样做既充分体现学生的主体地位和教师的主导作用,同时也较好地贯彻新课程所倡导“自主探究、合作交流”的学习方式。
(二)新课讲授
1、系统抽样的概念方法步骤
(学生阅读课本上的内容,教师引导学生总结归纳得出“系统抽样”的概念,并点明课题)
[设计意图]经历实例探究过程,学生对系统抽样的`概念方法步骤应有大致了解,辅以教师引导,从具体到一般,本节新课题的学习便水到渠成。
2、典型例题精析
例1、某校高中三年级的300名学生已经编号为1,2,……,300,为了了解学生的学习情况,要按10%的比例抽取一个样本,请用系统抽样的方法进行抽取,并写出过程。
(教师题意分析,引导学生应用新知识新方法,学生分析思考,探究解题,小组讨论后口述解题过程)
[设计意图]实例巩固,在得出新课的有关知识之后,再次让学生在解决实际问题的过程中,进一步理解掌握系统抽样的方法步骤,达到学以致用的技能,培养“学数学,用数学”的意识。
例2、某单位在职职工共624人,为了调查工人用于上班途中的时间,决定抽取10%的工人进行调查,试采用系统抽样方法抽取所需的样本。
[设计意图]当 不是整数时,设置本题让学生尝试回答,并形成一般思路与方法。
(三) 练习巩固
1、将全班学生按男女生交替排成一路纵队,用掷骰的方法在前6名学生中任选一名,用 表示该名学生在队列中的序号,将队列中序号为 ,(k=1,2,3,…)的学生抽出作为样本,这种抽样方法叫做系统抽样吗?为什么?其样本的代表性与公平性如何?
2、若按体重大小次序排成一路纵队呢?
[设计意图]配合课本第60页“边空”问题:“请将这种抽样方法与简单随机抽样做一个比较,你认为系统抽样能提高样本的代表性吗?为什么?”,帮助理解个体编号具有某种周期性时,样本代表性较差的特点。同时分析系统抽样的优点与缺点。
(四)回顾小结
1、师生共同回顾系统抽样的概念方法与步骤
2、与简单随机抽样比较,系统抽样适合怎样的总体情况?
3、当 不是整数时,一般步骤是什么?此时样本的公平性与代表性如何?
(五)布置作业
课本第61页的练习第1,2,3题
设计意图:课后作业的布置是为了检验学生对本节课内容的理解和运用程度以及实际接受情况,并促使学生进一步巩固和掌握所学内容。
高中数学说课稿9
一、教材分析
1.教材所处的地位和作用
在学习了随机事件、频率、概率的意义和性质及用概率解决实际问题和古典概型的概念后,进一步体会用频率估计概率思想。它是对古典概型问题的一种模拟,也是对古典概型知识的深化,同时它也是为了更广泛、高效地解决一些实际问题、体现信息技术的优越性而新增的内容。
2.教学的重点和难点
重点:正确理解随机数的概念,并能应用计算器或计算机产生随机数。
难点:建立概率模型,应用计算器或计算机来模拟试验的方法近似计算概率,解决一些较简单的现实问题。
二、教学目标分析
1、知识与技能:
(1)了解随机数的概念;
(2)利用计算机产生随机数,并能直接统计出频数与频率。
2、过程与方法:
(1)通过对现实生活中具体的概率问题的探究,感知应用数学解决问题的方法,体会数学知识与现实世界的联系,培养逻辑推理能力;
(2)通过模拟试验,感知应用数字解决问题的方法,自觉养成动手、动脑的良好习惯
3、情感态度与价值观:
通过数学与探究活动,体会理论来源于实践并应用于实践的辩证唯物主义观点.
三、教学方法与手段分析
1、教学方法:本节课我主要采用启发探究式的教学模式。
2、教学手段:利用多媒体技术优化课堂教学
四、教学过程分析
㈠创设情境、引入新课
情境1:假设你作为一名食品卫生工作人员,要对某超市内的'80袋小包装饼干中抽取10袋进行卫生达标检验,你打算如何操作?
预设学生回答:
⑴采用简单随机抽样方法(抽签法)
⑵采用简单随机抽样方法(随机数表法)
教师总结得出:随机数就是在一定范围内随机产生的数,并且得到这个范围内每一数的机会一样。(引入课题)
「设计意图」(1)回忆统计知识中利用随机抽样方法如抽签法、随机数表法等进行抽样的步骤和特征;(2)从具体试验中了解随机数的含义。
情境2:在抛硬币和掷骰子的试验中,是用频率估计概率。假如现在要作10000次试验,你打算怎么办?大家可能觉得这样做试验花费时间太多了,有没有其他方法可以代替试验呢?
「设计意图」当需要随机数的量很大时,用手工试验产生随机数速度太慢,从而说明利用现代信息技术的重要性,体现利用计算器或计算机产生随机数的必要性。
㈡操作实践、了解新知
教师:向学生介绍计算器的操作,让他们了解随机函数的原理。可事先编制几个小问题,在课堂上带着学生用计算器(科学计算器或图形计算器)操作一遍,让学生熟悉如何用计算器产生随机数。
「设计意图」通过操作熟悉计算器操作流程,在明白原理后,通过让学生自己按照规则操作,熟悉计算器产生随机数的操作流程,了解随机数。
问题1:抛一枚质地均匀的硬币出现正面向上的概率是50,你能设计一种利用计算器模拟掷硬币的试验来验证这个结论吗?
思考:随着模拟次数的不同,结果是否有区别,为什么?
「设计意图」⑴设计概率模型是解决概率问题的难点,也是能解决概率问题的关键,是数学建模的第一步。⑵抛硬币是最熟悉、最简单的问题,很自然会想到把正面向上、反面向上这两个基本事件用两个随机数来代替。(题目让学生通过熟悉50想到用随机数0,1来模拟,为后面问题4每天下雨的概率为40的概率建模作第一次小铺垫。)⑶熟悉利用计算器模拟试验的操作流程,为解决后面例题模拟下雨作好铺垫。
问题2:(1)刚才我们利用了计算器来产生随机数,我们知道计算机有许多软件有统计功能,你知道哪些软件具有随机函数这个功能?
(2)你会利用统计软件Excel来产生随机数0,1吗?你能设计一种利用计算机模拟掷硬币的试验吗?
「设计意图」⑴了解有许多统计软件都有随机函数这个功能,并与前面第一章所学的用程序语言编写程序相联系;⑵Excel是学生比较熟悉的统计软件,也可让学生回顾初中用Excel画统计图的一些功能和知识,其次让学生掌握多种随机模拟试验方法。
问题3:(1)你能在Excel软件中画试验次数从1到100次的频率分布折线图吗?
(2)当试验次数为1000,1500时,你能说说出现正面向上的频率有些什么变化?
「设计意图」⑴应用随机模拟方法估计古典概型中随机事件的概率值;
⑵体会频率的随机性与相对稳定性,经历用计算机产生数据,整理数据,分析数据,画统计图的全过程,使学生相信统计结果的真实性、随机性及规律性。
㈢讲练结合、巩固新知
问题4:天气预报说,在今后的三天中,每一天下雨的概率均为40,这三天中恰有两天下雨的概率是多少?
问1:能用古典概型的计算公式求解吗?
你能说明一下这为什么不是古典概型吗?
问2:你如何模拟每一天下雨的概率为40?
「设计意图」⑴问题分层提出,降低本题难度。如何模拟每一天下雨的概率40是解决这道题的关键,是随机模拟方法应用的重点,也是难点之一。
⑵巩固用随机模拟方法估计未知量的基本思想,明确利用随机模拟方法也可解决不是古典概型而比较复杂的概率应用题。
归纳步骤:第一步,设计概率模型;
第二步,进行模拟试验;
方法一:(随机模拟方法--计算器模拟)利用计算器随机函数;
方法二:(随机模拟方法--计算机模拟)
第三步,统计试验的结果。
课堂检测将一枚质地均匀的硬币连掷三次,出现"2个正面朝上、1个反面朝上"和"1个正面朝上、2个反面朝上"的概率各是多少?并用随机模拟的方法做100次试验,计算各自的频数。
「设计意图」通过练习,进一步巩固学生对本节课知识的掌握。
㈣归纳小结
(1)你能归纳利用随机模拟方法估计概率的步骤吗?
(2)你能体会到随机模拟的优势吗?请举例说说。
「设计意图」⑴通过问题的思考和解决,使学生理解模拟方法的优点,并充分利用信息技术的优势;⑵是对知识的进一步理解与思考,又是对本节内容的回顾与总结。
㈤布置练习:
课本练习3、4
「设计意图」课后作业的布置是为了检验学生对本节课内容的理解和运用程度,并促使学生进一步巩固和掌握所学内容。
[内容结束]
高中数学说课稿10
尊敬的各位专家、评委:
下午好!
我的抽签序号是____,今天我说课的课题是《_______》第__课时。 我尝试利用新课标的理念来指导教学,对于本节课,我将以“教什么,怎么教,为什么这样教”为思路,从教材分析、目标分析、教法学法分析、教学过程分析和评价分析五个方面来谈谈我对教材的理解和教学的设计,敬请各位专家、评委批评指正。
一、教材分析
(一)地位与作用
数列是高中数学重要内容之一,它不仅有着广泛的实际应用,而且起着承前启后的作用。一方面数列作为一种特殊的函数与函数思想密不可分;另一方面学习数列也为进一步学习数列的极限等内容做好准备。而等差数列是在学生学习了数列的有关概念和给出数列的两种方法——通项公式和递推公式的基础上,对数列的知识进一步深入和拓广。同时等差数列也为今后学习等比数列提供了学习对比的依据。
(二)学情分析
(1)学生已熟练掌握_________________。
(2)学生的知识经验较为丰富,具备了教强的抽象思维能力和演绎推理能力。
(3)学生思维活泼,积极性高,已初步形成对数学问题的合作探究能力。
(4) 学生层次参次不齐,个体差异比较明显。
二、目标分析
新课标指出“三维目标”是一个密切联系的有机整体,应该以获得知识与技能的过程,同时成为学会学习和正确价值观。这要求我们在教学中以知识技能的培养为主线,透情感态度与价值观,并把这两者充分体现在教学过程中,新课标指出教学的主体是学生,因此目标的制定和设计必须从学生的角度出发,根据____在教材内容中的地位与作用,结合学情分析,本节课教学应实现如下教学目标:
(一)教学目标
(1)知识与技能
使学生理解函数单调性的概念,初步掌握判别函数单调性的方法;。
(2)过程与方法
引导学生通过观察、归纳、抽象、概括,自主建构单调增函数、单调减函数等概念;能运用函数单调性概念解决简单的问题;使学生领会数形结合的数学思想方法,培养学生发现问题、分析问题、解决问题的能力。
(3)情感态度与价值观
在函数单调性的学习过程中,使学生体验数学的科学价值和应用价值,培养学生善于观察、勇于探索的良好习惯和严谨的科学态度。
(二)重点难点
本节课的教学重点是________________________,教学难点是_____________________。
三、教法、学法分析
(一)教法
基于本节课的内容特点和高二学生的年龄特征,按照临沂市高中数学“三五四”课堂教学策略,采用探究――体验教学法为主来完成教学,为了实现本节课的教学目标,在教法上我采取了:
1、通过学生熟悉的实际生活问题引入课题,为概念学习创设情境,拉近数学与现实的距离,激发学生求知欲,调动学生主体参与的积极性.
2、在形成概念的过程中,紧扣概念中的关键语句,通过学生的主体参与,正确地形成概念.
3、在鼓励学生主体参与的同时,不可忽视教师的主导作用,要教会学生清晰的思维、严谨的推理,并顺利地完成书面表达.
(二)学法
在学法上我重视了:
1、让学生利用图形直观启迪思维,并通过正、反例的构造,来完成从感性认识到理性思维的质的飞跃。
2、让学生从问题中质疑、尝试、归纳、总结、运用,培养学生发现问题、研究问题和分析解决问题的能力。
四、教学过程分析
(一)教学过程设计
教学是一个教师的“导”,学生的“学”以及教学过程中的.“悟”构成的和谐整体。教师的“导”也就是教师启发、诱导、激励、评价等为学生的学习搭建支架,把学习的任务转移给学生,学生就是接受任务,探究问题、完成任务。如果在教学过程中把“教与学”完美的结合也就是以“问题”为核心,通过对知识的发生、发展和运用过程的演绎、解释和探究来组织和推动教学。
(1)创设情境,提出问题。
新课标指出:“应该让学生在具体生动的情境中学习数学”。在本节课的教学中,从我们熟悉的生活情境中提出问题,问题的设计改变了传统目的明确的设计方式,给学生最大的思考空间,充分体现学生主体地位。
(2)引导探究,建构概念。
数学概念的形成来自解决实际问题和数学自身发展的需要.但概念的高度抽象,造成了难懂、难教和难学,这就需要让学生置身于符合自身实际的学习活动中去,从自己的经验和已有的知识基础出发,经历“数学化”、“再创造”的活动过程.
(3)自我尝试,初步应用。
有效的数学学习过程,不能单纯的模仿与记忆,数学思想的领悟和学习过程更是如此。让学生在解题过程中亲身经历和实践体验,师生互动学习,生生合作交流,共同探究.
(4)当堂训练,巩固深化。
通过学生的主体参与,使学生深切体会到本节课的主要内容和思想方法,从而实现对知识识的再次深化。
(5)小结归纳,回顾反思。
小结归纳不仅是对知识的简单回顾,还要发挥学生的主体地位,从知识、方法、经验等方面进行总结。我设计了三个问题:(1)通过本节课的学习,你学到了哪些知识?(2)通过本节课的学习,你最大的体验是什么?(3)通过本节课的学习,你掌握了哪些技能?
(二)作业设计
作业分为必做题和选做题,必做题对本节课学生知识水平的反馈,选做题是对本
节课内容的延伸与,注重知识的延伸与连贯,强调学以致用。通过作业设置,使不同层次的学生都可以获得成功的喜悦,看到自己的潜能,从而激发学生饱满的学习兴趣,促进学生自主发展、合作探究的学习氛围的形成.
我设计了以下作业:
(1)必做题
(2)选做题
(三)板书设计
板书要基本体现整堂课的内容与方法,体现课堂进程,能简明扼要反映知识结构及其相互联系;能指导教师的教学进程、引导学生探索知识;通过使用幻灯片辅助板书,节省课堂时间,使课堂进程更加连贯。
五、评价分析
学生学习的结果评价当然重要,但是更重要的是学生学习的过程评价。我采用及时点评、延时点评与学生互评相结合,全面考查学生在知识、思想、能力等方面的发展情况,在质疑探究的过程中,评价学生是否有积极的情感态度和顽强的理性精神,在概念反思过程中评价学生的归纳猜想能力是否得到发展,通过巩固练习考查学生对____是否有一个完整的集训,并进行及时的调整和补充。 以上就是我对本节课的理解和设计,敬请各位专家、评委批评指正。 谢谢!
高中数学说课稿11
一、教材分析
集合概念及其基本理论,称为集合论,是近、现代数学的一个重要的基础,一方面,许多重要的数学分支,都建立在集合理论的基础上。另一方面,集合论及其所反映的数学思想,在越来越广泛的领域种得到应用。
本节课主要分为两个部分,一是理解集合的定义及一些基本特征。二是掌握集合与元素之间的关系。
二、教学目标
1、学习目标
(1)通过实例,了解集合的含义,体会元素与集合之间的关系以及理解“属
于”关系;
(2)能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用;
2、能力目标
(1)能够把一句话一个事件用集合的方式表示出来。
(2)准确理解集合与及集合内的元素之间的关系。
3、情感目标
通过本节的把实际事件用集合的方式表示出来,从而培养数学敏感性,了 解到数学于生活中。
三、教学重点与难点
重点 集合的基本概念与表示方法;
难点 运用集合的两种常用表示方法———列举法与描述法,正确表示一些简单的集合;
四、教学方法
(1)本课将采用探究式教学,让学生主动去探索,激发学生的学习兴趣。并分层教学,这样可顾及到全体学生,达到优生得到培养,后进生也有所收获的效果;
(2)学生在老师的引导下,通过阅读教材,自主学习、思考、交流、讨论和概括,从而完成本节课的教学目标。
五、学习方法
(1)主动学习法:举出例子,提出问题,让学生在获得感性认识的同时,
教师层层深入,启发学生积极思维,主动探索知识,培养学生思维想象 的综合能力。
(2)反馈补救法:在练习中,注意观察学生对学习的反馈情况,以实现“培
优扶差,满足不同。”
六、教学思路
具体的思路如下
复习的引入:讲一些集合的相关数学及相关数学家的经历故事!这可以让学生更加了解数学史从何使学生对数学更加感兴趣,有助于上课的效率!因为时间关系这里我就不说相关数学史咯。
一、 引入课题
军训前学校通知:8月15日8点,高一年段在体育馆集合进行军训动员;试问这个通知的对象是全体的高一学生还是个别学生?
在这里,集合是我们常用的一个词语,我们感兴趣的是问题中某些特定(是高一而不是高二、高三)对象的总体,而不是个别的对象,为此,我们将学习一个新的概念——集合,即是一些研究对象的总体。
二、 正体部分
学生阅读教材,并思考下列问题:
(1)集合有那些概念?
(2)集合有那些符号?
(3)集合中元素的特性是什么?
(4)如何给集合分类?
(一)集合的有关概念
(1)对象:我们可以感觉到的客观存在以及我们思想中的事物或抽象符号,
都可以称作对象.
(2)集合:把一些能够确定的.不同的对象看成一个整体,就说这个整体是由
这些对象的全体构成的集合.
(3)元素:集合中每个对象叫做这个集合的元素.
集合通常用大写的拉丁字母表示,如A、B、C、??元素通常用小写的拉丁字母表示,如a、b、c、??
1. 思考:课本P3的思考题,并再列举一些集合例子和不能构成集合的例子,
对学生的例子予以讨论、点评,进而讲解下面的问题。
2、元素与集合的关系
(1)属于:如果a是集合A的元素,就说a属于A,记作a∈A。(举例)集合A={2,3,4,6,9}a=2 因此我们知道 a∈A
(2)不属于:如果a不是集合A的元素,就说a不属于A,记作a?A
要注意“∈”的方向,不能把a∈A颠倒过来写. (举例)
集合A={3,4,6,9}a=2 因此我们知道a?A
3、集合中元素的特性
(1)确定性:给定一个集合,任何对象是不是这个集合的元素是确定的了.
(2)互异性:集合中的元素一定是不同的
(3)无序性:集合中的元素没有固定的顺序.
4、集合分类
根据集合所含元素个属不同,可把集合分为如下几类:
(1)把不含任何元素的集合叫做空集Ф
(2)含有有限个元素的集合叫做有限集
(3)含有无穷个元素的集合叫做无限集
注:应区分?,{?},{0},0等符号的含义
5、常用数集及其表示方法
(1)非负整数集(自然数集):全体非负整数的集合.记作N
(2)正整数集:非负整数集内排除0的集.记作N*或N+
(3)整数集:全体整数的集合.记作Z
(4)有理数集:全体有理数的集合.记作Q
(5)实数集:全体实数的集合.记作R
注:(1)自然数集包括数0.
(2)非负整数集内排除0的集.记作N*或N+,Q、Z、R等其它数集内排
除0的集,也这样表示,例如,整数集内排除0的集,表示成Z*
(二)集合的表示方法
我们可以用自然语言来描述一个集合,但这将给我们带来很多不便,除此之外还常用列举法和描述法来表示集合。
(1) 列举法:把集合中的元素一一列举出来,写在大括号内。
如:{1,2,3,4,5},{x2,3x+2,5y3-x,x2+y2},?;
例1.(课本例1)
思考2,引入描述法
说明:集合中的元素具有无序性,所以用列举法表示集合时不必考虑元素的顺序。
(2) 描述法:把集合中的元素的公共属性描述出来,写在大括号{}内。 具体方法:在大括号内先写上表示这个集合元素的一般符号及取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征。
如:{x|x-3>2},{(x,y)|y=x2+1},{直角三角形},?;
例2.(课本例2)
说明:(课本P5最后一段)
思考3:(课本P6思考) 强调:描述法表示集合应注意集合的代表元素
{(x,y)|y= x2+3x+2}与 {y|y= x2+3x+2}不同,只要不引起误解,集合的代表元素也可省略,例如:{整数},即代表整数集Z。
辨析:这里的{ }已包含“所有”的意思,所以不必写{全体整数}。下列写法{实数集},{R}也是错误的。
说明:列举法与描述法各有优点,应该根据具体问题确定采用哪种表示法,要注意,一般集合中元素较多或有无限个元素时,不宜采用列举法。
(三)课堂练习(课本P6练习)
三、 归纳小结与作业
本节课从实例入手,非常自然贴切地引出集合与集合的概念,并且结合实例对集合的概念作了说明,然后介绍了集合的常用表示方法,包括列举法、描述法。
书面作业:习题1.1,第1- 4题
高中数学说课稿12
一、教材分析
1、教材所处的地位和作用
奇偶性是人教A版第一章集合与函数概念的第3节函数的基本性质的第2小节。
奇偶性是函数的一条重要性质,教材从学生熟悉的及入手,从特殊到一般,从具体到抽象,注重信息技术的应用,比较系统地介绍了函数的奇偶性。从知识结构看,它既是函数概念的拓展和深化,又是后续研究指数函数、对数函数、幂函数、三角函数的基础。所以,本节课起着承上启下的重要作用。
2、学情分析
从学生的认知基础看,学生在初中已经学习了轴对称图形和中心对称图形,并且有了必须数量的简单函数的储备。同时,刚刚学习了函数单调性,已经积累了研究函数的基本方法与初步经验。
从学生的思维发展看,高一学生思维本事正在由形象经验型向抽象理论型转变,能够用假设、推理来思考和解决问题、
3、教学目标
基于以上对教材和学生的分析,以及新课标理念,我设计了这样的教学目标:
【知识与技能】
1)能确定一些简单函数的奇偶性。
2)能运用函数奇偶性的代数特征和几何意义解决一些简单的问题。
【过程与方法】
经历奇偶性概念的构成过程,提高观察抽象本事以及从特殊到一般的归纳概括本事。
【情感、态度与价值观】
经过自主探索,体会数形结合的.思想,感受数学的对称美。
从课堂反应看,基本上到达了预期效果。
4、教学重点和难点
重点:函数奇偶性的概念和几何意义。
几年的教学实践证明,虽然函数奇偶性这一节知识点并不是很难理解,但知识点掌握不全面的学生容易出现下头的错误。他们往往流于表面形式,只根据奇偶性的定义检验成立即可,而忽视了研究函数定义域的问题。所以,在介绍奇、偶函数的定义时,必须要揭示定义的隐含条件,从正反两方面讲清定义的内涵和外延。所以,我把函数的奇偶性概念设计为本节课的重点。在这个问题上我除了注意概念的讲解,还特意安排了一道例题,来加强本节课重点问题的讲解。
难点:奇偶性概念的数学化提炼过程。
由于,学生看待问题还是静止的、片面的,抽象概括本事比较薄弱,这对建构奇偶性的概念造成了必须的困难。所以我把奇偶性概念的数学化提炼过程设计为本节课的难点。
二、教法与学法分析
1、教法
根据本节教材资料和编排特点,为了更有效地突出重点,突破难点,按照学生的认知规律,遵循教师为主导,学生为主体,训练为主线的指导思想,采用以引导发现法为主,直观演示法、类比法为辅。教学中,精心设计一个又一个带有启发性和思考性的问题,创设问题情景,诱导学生思考,使学生始终处于主动探索问题的进取状态,从而培养思维本事。从课堂反应看,基本上到达了预期效果。
2、学法
让学生在观察一归纳一检验一应用的学习过程中,自主参与知识的发生、发展、构成的过程,从而使学生掌握知识。
三、教学过程
具体的教学过程是师生互动交流的过程,共分六个环节:设疑导入、观图激趣;指导观察、构成概念;学生探索、领会定义;知识应用,巩固提高;总结反馈;分层作业,学以致用。下头我对这六个环节进行说明。
(一)设疑导入、观图激趣
由于本节资料相对独立,专题性较强,所以我采用了开门见山导入方式,直接点明要学的资料,使学生的思维迅速定向,到达开始就明确目标突出重点的效果。
用多媒体展示一组图片,使学生感受到生活中的对称美。再让学生观察几个特殊函数图象。经过让学生观察图片导入新课,既激发了学生浓厚的学习兴趣,又为学习新知识作好铺垫。
(二)指导观察、构成概念
在这一环节中共设计了2个探究活动。
探究1、2数学中对称的形式也很多,这节课我们就以函数和=︱x︱以及和为例展开探究。这个探究主要是经过学生的自主探究来实现的,由于有图片的铺垫,绝大多数学生很快就说出函数图象关于Y轴(原点)对称。之后学生填表,从数值角度研究图象的这种特征,体此刻自变量与函数值之间有何规律引导学生先把它们具体化,再用数学符号表示。借助课件演示(令比较得出等式,再令,得到)让学生发现两个函数的对称性反应到函数值上具有的特性,然后经过解析式给出严格证明,进一步说明这个特性对定义域内任意一个都成立。最终给出偶函数(奇函数)定义(板书)。
在这个过程中,学生把对图形规律的感性认识,转化成数量的规律性,从而上升到了理性认识,切实经历了一次从特殊归纳出一般的过程体验。
(三)学生探索、领会定义
探究3下列函数图象具有奇偶性吗?
设计意图:深化对奇偶性概念的理解。强调:函数具有奇偶性的前提条件是--定义域关于原点对称。(突破了本节课的难点)
(四)知识应用,巩固提高
在这一环节我设计了4道题
例1确定下列函数的奇偶性
选例1的第(1)及(3)小题板书来示范解题步骤,其他小题让学生在下头完成。
例1设计意图是归纳出确定奇偶性的步骤:
(1)先求定义域,看是否关于原点对称;
(2)再确定f(-x)=-f(x)还是f(-x)=f(x)。
例2确定下列函数的奇偶性:
例3确定下列函数的奇偶性:
例2、3设计意图是探究一个函数奇偶性的可能情景有几种类型?
例4(1)确定函数的奇偶性。
(2)如图给出函数图象的一部分,你能根据函数的奇偶性画出它在y轴左边的图象吗?
例4设计意图加强函数奇偶性的几何意义的应用。
在这个过程中,我重点关注了学生的推理过程的表述。经过这些问题的解决,学生对函数的奇偶性认识、理解和应用都能提升很大一个高度,到达当堂消化吸收的效果。
(五)总结反馈
在以上课堂实录中充分展示了教法、学法中的互动模式,问题贯穿于探究过程的始终,切实体现了启发式、问题式教学法的特色。
在本节课的最终对知识点进行了简单回顾,并引导学生总结出本节课应积累的解题经验。知识在于积累,而学习数学更在于知识的应用经验的积累。所以提高知识的应用本事、增强错误的预见本事是提高数学综合本事的很重要的策略。
(六)分层作业,学以致用
必做题:课本第36页练习第1-2题。
选做题:课本第39页习题1、3A组第6题。
思考题:课本第39页习题1、3B组第3题。
设计意图:面向全体学生,注重个人差异,加强作业的针对性,对学生进行分层作业,既使学生掌握基础知识,又使学有余力的学生有所提高,进一步到达不一样的人在数学上得到不一样的发展。
高中数学说课稿13
一、说教材
1、教材的地位与作用《分类计数原理与分步计数原理》,是高中数学第十章排列、组合的第一节课。分类计数原理和分步计数原理是排列、组合的基础,学生对这两个原理的理解,掌握和运用,成为学好本章的一个关键。
2、教学目标
(1)知识目标掌握计数的两个基本原理,并能正确的用它们分析和解决一些简单的问题。
(2)能力目标通过计数基本原理的理解和运用,提高学生分析问题和解决问题的能力,开发学生的逻辑思维能力。
(3)情感目标培养学生勇于探索、勇于创新的精神,面对现实生活中复杂的事物和现象,能够作出正确的分析,准确的判断,进而拿出完善的处理方案,提高实际的应变能力。
3、重点、难点重点是分类计数原理与分步计数原理难点是正确运用分类计数原理与分步计数原理
二、说教法启发引导式
三、说学法指导学生运用观察分析讨论总结的学习方法。
四、教具、学具多媒体
五、教学程序
1、提出课题——引入新课
首先,提出本节课的课题分类计数原理与分步计数原理设计意图:明确任务,激发兴趣。
2、观察归纳——形成概念:
首先,我结合图给出问题1:
问题1:从北京到上海,可以乘火车,也可以乘汽车。一天中有火车3班,汽车有2班。那么一天中,乘坐这些交通工具从北京到上海共有多少种不同的走法?(答案:3+2=5)由这个问题我们得到分类计数原理:完成一件事,有n类办法,在第1类办法中有m1种不同的方法,在第2类办法中有m2种不同的方法‥‥‥,在第n类办法中有mn种不同的方法,那么完成这件事共有:N=m1+m2++mn种不同的方法接下来,我再结合图给出问题2:
问题2:从北京到上海,要从北京先乘火车到郑州,再于第二天从郑州乘汽车到上海。一天中从北京到郑州的火车有3班,从郑州到上海的汽车有2班。那么两天中,从北京到上海共有多少种不同的走法?(答案:3x2=6)。
由这个问题我们得到分步计数原理:完成一件事,需要分成n个步骤,做第1步有m1种不同的方法,做第2步有m2种不同的方法‥‥‥,做第n步有mn种不同的方法,那么完成这件事共有N=m1×m2××mn种不同的方法。
设计意图:由两个实际问题,引导学生得到分类计数原理与分步计数原理,培养学生的观察、归纳能力。
3、比较归纳深化概念两个原理的比较:
1)共同点:都是计数原理,即统计完成某件事不同方法种数的原理,因此都要先弄清是怎样一件事,如何才算完成这件事。
2)不同点:分类计数原理中的n类办法相互独立,且每类里的每种方法都可独立完成该事件;分步计数原理中的n个步骤缺一不可,每一步都不能独立完成该件事,只有这n个步骤都完成之后,这件事才算完成。
设计意图:通过两个原理的比较,让更好的掌握原理的使用。
4、学以致用——培养能力
例1、书架的第一层放有4本不同的计算机书,第二层放有3本不同的文艺书,第3层放有2本不同的'体育书。
(1)从书架上任取1本书,有多少种不同的取法?
(2)从书架的第1、2、3层各取1本书,有多少种不同的取法?(书架取书问题)引导学生分析解答,注意区分是分类还是分步。
例2、一种号码锁有4个拨号盘,每个拨号盘上有从0到9共10个数字,这4个拨号盘可以组成多少个四位数字的号码?
例3、如图是广场中心的一个大花坛,国庆期间要在A、B、C、D四个区域摆放鲜花,有4种不同颜色的鲜花可供选择,规定每个区域只准摆放一种颜色的鲜花,相邻区域鲜花颜色不同,问共有多少种不同的摆花方案?
设计意图:为了使学生达到对知识的深化理解,从而达到巩固提高的效果。
5、任务后延——自主探究
(1)填空:
①一件工作可以用2种方法完成,有5人会第一种方法完成,另有4人会用第2种方法完成,从中选出1人来完成这件工作,不同的选法的种数是9。
②从A村去B村的道路有3条,从B村去C村的道路有2条,从A村经B村去C村,不同走法的种数是6。
(2)现有高中一年级的学生3名,高中二年级的学生5名,高中三年级的学生4名。
①从中选1人参加接待外宾的活动,有多少种不同的选法?12
②从3个年级各选1人参加接待外宾的活动,有多少种不同的选法?60
(3)把(a1+a2+a3)(b1+b2+b3+b4+b5)(c1+c2+c3+c4)展开后不合并时共有多少项?60
设计意图:培养学生灵活运用所学知识解决实际问题的能力。
6、总结反思——提高认识本节课学习了以下内容(1)分类计数原理(2)分步计数原理(3)两个原理的比较(4)用两个原理解题的步骤
设计意图:突出重点,帮助学生对所学知识系统化、条理化
7、布置作业——知识拓展P97习题10。11,2,3题设计意图:巩固所学知识,发现和弥补教学中的遗漏和不足,培养学生良好的学习习惯。
六、板书设计(略)
高中数学说课稿14
一、说教材:
1. 地位及作用:
“椭圆及其标准方程”是高中《解析几何》第二章第七节内容,是本书的重点内容之一,也是历年高考、会考的必考内容,是在学完求曲线方程的基础上,进一步研究椭圆的特性,以完成对圆锥曲线的全面研究,为今后的学习打好基础,因此本节内容具有承前启后的作用。
2. 教学目标:
根据《教学大纲》,《考试说明》的要求,并根据教材的具体内容和学生的实际情况,确定本节课的教学目标:
(1)知识目标:掌握椭圆的定义和标准方程,以及它们的应用。
(2)能力目标:
(a)培养学生灵活应用知识的能力。
(b) 培养学生全面分析问题和解决问题的能力。
(c)培养学生快速准确的运算能力。
(3)德育目标:培养学生数形结合思想,类比、分类讨论的思想以及确立从感性到理性认识的辩证唯物主义观点。
3. 重点、难点和关键点:
因为椭圆的定义和标准方程是解决与椭圆有关问题的重要依据,也是研究双曲线和抛物线的基础,因此,它是本节教材的重点;由于学生推理归纳能力较低,在推导椭圆的标准方程时涉及到根式的两次平方,并且运算也较繁,因此它是本节课的难点;坐标系建立的好坏直接影响标准方程的推导和化简,因此建立一个适当的直角坐标系是本节的关键。
二、 说教材处理
为了完成本节课的教学目标,突出重点、分散难点、根据教材的内容和学生的实际情况,对教材做以下的处理:
1.学生状况分析及对策:
2.教材内容的组织和安排:
本节教材的处理上按照人们认识事物的规律,遵循由浅入深,循序渐进,层层深入的原则组织和安排如下:
(1)复习提问(2)引入新课(3)新课讲解(4)反馈练习(5)归纳总结(6)布置作业
三、 说教法和学法
1.为了充分调动学生学习的.积极性,是学生变被动学习为主动而愉快的学习,引导学生自己动手,让学生的思维活动在教师的引导下层层展开。请学生参与课堂。加强方程推导的指导,是传授知识与培养能力有机的溶为一体,为此,本节课采用“引导教学法”。
2.利用电脑所画图形的动态演示总结规律。同时利用电脑的动态演示激发学生的学习兴趣。
四、 教学过程
教学环节
3.设a(-2,0),b(2,0),三角形abp周长为10,动点p轨迹方程。
例1属基础,主要反馈学生掌握基本知识的程度。
例2可强化基本技能训练和基本知识的灵活运用。
小结
为使学生对本节内容有一个完整深刻的认识,教师引导学生从以下几个方面进行小结。
1.椭圆的定义和标准方程及其应用。
2.椭圆标准方程中a,b,c诸关系。
3.求椭圆方程常用方法和基本思路。
通过小结形成知识体系,加深对本节知识的理解培养学生的归纳总结能力,增强学生学好圆锥曲线的信心。
布置作业
(1) 77页——78页 1,2,3,79页 11
(2) 预习下节内容
巩固本节所学概念,强化基本技能训练,培养学生良好的学习习惯和品质,发现和弥补教学中的遗漏和不足。
高中数学说课稿15
各位老师:
大家好!我叫,来自湖南科技大学。我说课的题目是《辗转相除法与更相减损术》,内容选自于新课程人教A版必修3第一章第三节,课时安排为一个课时。下面我将从教材分析、教学目标分析、教学方法与手段分析、学法分析和教学过程分析等五大方面来阐述我对这节课的分析和设计:
一、教材分析
1.教材所处的地位和作用
在前面的两节里,我们已经学习了一些简单的算法,对算法已经有了一个初步的了解。
这节课的内容是继续加深对算法的认识,体会算法的思想。这节课所学习的辗转相除法与更相减损术是第三节我们所要学习的四种算法案例里的第一种。学生们通过本节课对中国古代数学中的算法案例——辗转相除法与更相减损术学习,体会中国古代数学对世界数学发展的贡献。
2.教学的重点和难点
重点:理解辗转相除法与更相减损术求最大公约数的方法。
难点:把辗转相除法与更相减损术的方法转换成程序框图与程序语言。
二、教学目标分析
1.知识与技能目标:
⑴理解辗转相除法与更相减损术中蕴含的数学原理,并能根据这些原理进行算法分析。 ⑵基本能根据算法语句与程序框图的知识设计完整的程序框图并写出算法程序。
2.过程与方法目标:
⑴对比用辗转相除法与更相减损术求两数的最大公约数的方法,比较它们在算法上的区别,并从程序的学习中体会数学的严谨。 ⑵领会数学算法与计算机处理的结合方式,初步掌握把数学算法转化成计算机语言的一般步骤。
3.情感,态度和价值观目标
⑴通过阅读中国古代数学中的算法案例,体会中国古代数学对世界数学发展的贡献。
⑵在学习古代数学家解决数学问题的方法的过程中培养严谨的逻辑思维能力,在利用算法解决数学问题的过程中培养理性的精神和动手实践的能力。
⑶在合作学习的过程中体验合作的愉快和成功的喜悦。
三、教学方法与手段分析
1.教学方法:充分发挥学生的主体作用和教师的主导作用,采用启发式,并遵循循序渐进的教学原则。这有利于学生掌握从现象到本质,从已知到未知逐步形成概念的学习方法,有利于发展学生抽象思维能力和逻辑推理能力。
2.教学手段:通过各种教学媒体(计算机)调动学生参与课堂教学的主动性与积极性。
四、学法分析
在理解最大公约数的基础上去发现辗转相除法与更相减损术中的数学规律,并能模仿已经学过的程序框图与算法语句设计出辗转相除法与更相减损术的程序框图与算法程序。
五、教学过程分析
㈠复习引入
1. 首先要回顾一下前面我们已经学习过的算法的三种表示方法:自然语言、程序框图(三种逻辑结构)、程序语言(五种基本语句),这个是为了带领学生们对之前学过的内容熟悉一下,也为下面的学习打下基础。
2. 然后提出问题:在初中,我们已经学过求最大公约数的知识,你能求出18与30的公约数吗?
3. 接着教师进一步提出问题,我们都是利用找公约数的方法来求最大公约数,如果公约数比较大而且根据我们的观察又不能得到一些公约数,我们又应该怎样求它们的最大公约数?比如求8251与6105的最大公约数?由此就引出我们这一堂课所要探讨的内容。(板出课题)
㈡讲授新课
1.首先我们学习的是辗转相除法,为了更好地总结出辗转相除法求最大公约数的基本步骤,我先给出了一个例题。
例1求两个正数8251和6105的最大公约数。
在老师的.引导下,师生一同完成整个解题过程,然后分析这些步骤,得出辗转相除法求最大公约数的基本步骤. 2.然后依照同样的方法学习更相减损术求最大公约数的基本步骤 (这样能够锻炼学生们的逻辑思维能力以及概括能力)
3.给出两道练习,以及时巩固刚刚学习的新知识。
练习 1利用辗转相除法求两数4081与20723的最大公约数(答案:53)
2 用更相减损术求两个正数84与72的最大公约数。(答案:12)
4.思考:你能利用辗转相除法和更相减损术试着设计程序求出上面两道练习的答案吗?然后
试着在计算机上运行程序。(这样可以激发学生们的学习兴趣,并且将学习的内容得到及时的应用)
㈢课堂小结
1.比较辗转相除法与更相减损术的区别
2.对比分析辗转相除法与更相减损术求最大公约数的计算方法及完整算法程序。
通过小结使学生们对知识有一个系统的认识,突出重点,抓住关键,培养概括能力。
㈣布置作业
习题1.3 A组 1
[设计意图]课后作业的布置是为了检验学生对本节课内容的理解和运用程度以及实际接受情况,并促使学生进一步巩固和掌握所学内容。
【高中数学说课稿】相关文章:
高中数学说课稿11-15
【推荐】高中数学说课稿三篇11-20
精选高中数学说课稿模板汇总五篇11-29
精选高中数学说课稿范文合集九篇11-30
关于高中数学说课稿范文锦集10篇12-02
高中数学教学总结11-08
高中数学教学设计03-02
高中数学教学设计12-26
说课稿09-08
高中数学教学计划04-04